Skip to main content
Log in

Single-mode response and control of a hinged–hinged flexible beam

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The problem of suppressing the vibrations of a hinged–hinged flexible beam that is subjected to primary and principal parametric excitations is tackled. Different control laws are proposed, and saturation phenomenon is investigated to suppress the vibrations of the system. The dynamics of the beam are modeled with a second-order nonlinear ordinary-differential equation. The method of multiple scales is used to derive two-first ordinary differential equations that govern the time variation of the amplitude and phase of the response. These equations are used to determine the steady-state responses and their stability. The results of perturbation solution have been verified through numerical simulations, where different effects of the system parameters on the steady-state amplitude and on saturation phenomena at resonance have been reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hatwal H., Malik A.K. and Ghosh A. (1973). Non-linear vibrations of a harmonically excited autoparametric system. J. Sound Vib. 82(2): 153–164

    Google Scholar 

  2. Hatwal H. (1982). Notes on an autoparametric vibrations absorber. J. Sound Vib. 83(3): 440–443

    MathSciNet  Google Scholar 

  3. Zavodney L.D., Nayfeh A.H. and Sanchez N.E. (1989). The response of single-degree-of-freedom system with quadratic and cubic nonlinearities to a principal parametric resonance. J. Sound Vib. 129(3): 417–442

    Article  MathSciNet  Google Scholar 

  4. Zavodney L.D. and Nayfeh A.H. (1989). The non-linear response of a slender beam carrying a lumped mass to a principal parametric excitation: theory and experiment. Int. J. Nonlinear Mech. 24(2): 105–125

    Article  MATH  Google Scholar 

  5. Palkovics L. and Venhovens P.J. (1992). Investigation on stability and possible chaotic motion in the controlled wheel suspension system. Vehicle Syst. Dyn. 21(5): 269–296

    Article  Google Scholar 

  6. Asfar K.R. and Masoud K.K. (1994). Damping of parametrically excited single-degree-of-freedom systems. Int. J. Nonlinear Mech. 29(3): 421–428

    Article  MATH  Google Scholar 

  7. Nayfeh S.A. and Nayfeh A.H. (1995). The response of nonlinear systems to modulated high-frequency input. Nonlinear Dyn. 7(3): 301–315

    Article  MathSciNet  Google Scholar 

  8. Anderson T.J., Nayfeh A.H. and Balachandran B. (1996). Experimental verification of the importance of the cantilever beam. ASME J. Vib. Acoust. 118(1): 21–27

    Article  Google Scholar 

  9. Moiola J.L., Chiacchiarini H.G. and Desages A.C. (1996). Bifurcations and Hopf degeneracies in nonlinear feedback systems with time delay. Int. J. Bifurc. Chaos 64(4): 661–672

    Google Scholar 

  10. Deryugin A.N., Loskutov A.Y. and Tereshko V.M. (1996). Inducing stable periodic behaviour in a class of dynamical systems by parametric perturbations. Chaos Sol. Fract. 7(10): 1555–1567

    Article  MathSciNet  MATH  Google Scholar 

  11. Ashour O.N. and Nayfeh A.H. (2002). Adaptive control flexible structures using a nonlinear vibration absorber. Nonlinear Dyn. 28(3–4): 309–322

    Article  MATH  Google Scholar 

  12. Huang Y.-J. and Wang Y.-J. (2002). Steady-state analysis for a class of sliding mode controlled systems using describing function method. Nonlinear Dyn. 30(3): 223–241

    Article  MATH  Google Scholar 

  13. Cao H. (2005). Primary resonant optimal control for homoclinic bifurcations in single-degree-of-freedom nonlinear oscillators. Chaos Sol. Fract. 24(5): 1387–1398

    Article  MATH  Google Scholar 

  14. Nayfeh A.H., Mook D.T. and Sridhar S. (1974). Nonlinear analysis of the forced response of structural elements. J. Acoust. Soc. Am. 55: 281–291

    Article  Google Scholar 

  15. Sridhar S., Nayfeh A.H. and Mook D.T. (1975). Nonlinear resonances in a class of multi-degree-of freedom systems. J. Acoust. Soc. Am. 58: 113–123

    Article  MATH  Google Scholar 

  16. Chen S.H., Cheung Y.K. and Lau S.L. (1989). On the internal resonance of multi-degree-of- freedom systems with cubic nonlinearity. J. Sound Vib. 128(1): 13–24

    Article  MathSciNet  Google Scholar 

  17. Lau S.L., Cheung Y.K. and Chen S.H. (1989). An alternative perturbation procedure of scales for nonlinear dynamics system. ASME J. Appl. Mech. 56: 667–675

    MathSciNet  MATH  Google Scholar 

  18. Zhang W., Wang F.-X. and Zu J.W. (2005). Local bifurcations and codimension-3 degenerate bifurcations of a quintic nonlinear beam under parametric excitation. Chaos Sol. Fract. 24(4): 977–998

    Article  MathSciNet  MATH  Google Scholar 

  19. Burke S.E. and Hubbard J.E. (1988). Distributed actuator control design for flexible beam. Automatica 24: 619–627

    Article  MathSciNet  MATH  Google Scholar 

  20. Bailey T. and Hubbard J.E. (1985). Distributed piezoelectric-polymer active vibration control of a cantilever beam. J. Guid. 8: 605–611

    Article  MATH  Google Scholar 

  21. Crawley E.F. and Luis J.De. (1987). Use of piezoelectric actuators as elements of intelligent structures. Am. Inst. Aeronaut. Astronaut. J. 25: 1373–1385

    Google Scholar 

  22. Baz A. and Poh S (1988). Performance of an active control system with piezoelectric actuators. J. Sound Vib. 126(2): 327–343

    Article  Google Scholar 

  23. Tzou H.S. (1987). Active vibration control of flexible structures via converse piezoelectricity. Dev. Mech. 14-C: 1201–1206

    Google Scholar 

  24. Tuer K.L., Golnaraghi M.F. and Wang D. (1994). Development of a generalized active vibration suppression strategy for a cantilever beam using internal resonance. Nonlinear Dyn. 5(2): 131–151

    Google Scholar 

  25. Oueini S.S. and Golnaraghi M.F. (1996). Experimental implementation of the internal resonance control strategy. J. Sound Vib. 191(3): 377–396

    Article  Google Scholar 

  26. Amer Y.A. and Hegazy U.H. (2007). Resonance behavior of a rotor-active magnetic bearing with time-varying stiffness. Chaos Sol. Fract. 34(4): 1328–1345

    Article  Google Scholar 

  27. Eissa M.H., Hegazy U.H. and Amer Y.A. (2008). Dynamic behavior of an AMB supported rotor subject to harmonic excitation. Appl. Math. Modell. 32(7): 1370–1380

    Article  MATH  Google Scholar 

  28. Hegazy U.H., Eissa M.H. and Amer Y.A. (2008). A time-varying stiffness rotor-AMB under combined resonance. ASME J. Appl. Mech. 75(1): 011011, 1–12

    Article  Google Scholar 

  29. Nayfeh A.H. (1973). Perturbation Methods. Wiley, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. H. Hegazy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hegazy, U.H. Single-mode response and control of a hinged–hinged flexible beam. Arch Appl Mech 79, 335–345 (2009). https://doi.org/10.1007/s00419-008-0230-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-008-0230-9

Keywords

Navigation