Skip to main content
Log in

Dynamic stress intensity factor of a crack perpendicular to the weak-discontinuous interface in a nonhomogeneous coating–substrate structure

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

A mechanical model was established for the antiplane dynamic fracture problem of a functionally graded coating–substrate structure with a coating crack perpendicular to the weak-discontinuous interface. The problem was reduced to a Cauchy singular integral equation by the methods of Laplace and Fourier integral transforms. Erdogan’s collocation method and the Laplace numerical inversion proposed by Miller and Guy were used to calculate the dynamic stress intensity factors. Three conclusions were drawn through parametric studies: (a) unlike the conclusion drawn for an interfacial crack, reducing the weak discontinuity of the interface will not necessarily decrease the dynamic stress intensity factor (DSIF) of the coating crack perpendicular to the interface; (b) increasing the stiffness of the substrate when that of the coating is fixed, or decreasing the stiffness of coating when that of the substrate is fixed, will be beneficial for the reduction of the DSIF of a coating crack perpendicular to the interface; and (c) the free surface has a greater influence on the DSIF than the interface does, and the effect of the interface on the DSIF is greater than that of the material stiffness in the crack-tip region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chaboche J.L., Girard R. and Levasseur P. (1997). On the interface debonding models. Int. J. Damage Mech. 6: 220–257

    Article  Google Scholar 

  2. Williams M.L. (1959). The stress around a fault or crack in dissimilar media. Bull. Seismol. Soc. Am. 49(2): 199–204

    Google Scholar 

  3. Rice J.R. (1988). Elastic fracture mechanics concepts for interfacial cracks. J. Appl. Mech. 55: 98–103

    Google Scholar 

  4. Shih C.F. and Asaro R.J. (1988). Elastic-plastic analysis of crack on bi-material interfaces: Part I-Small scale yielding. J. Appl. Mech. 55(2): 229–316

    Google Scholar 

  5. Shih C.F. and Asaro R.J. (1989). Elastic-plastic analysis of crack on bi-material interfaces: Part II-Structure of small scale yielding fields. J. Appl. Mech. 56(4): 763–779

    Google Scholar 

  6. Shih C.F. and Asaro R.J. (1991). Elastic-plastic analysis of crack on bi-material interfaces: Part III-Large scale yielding. J. Appl. Mech. 58(4): 450–463

    Article  Google Scholar 

  7. Wang T.C. (1990). Elastic-plastic asymptotic fields for cracks on bimaterial interfaces. Eng. Fract. Mech. 37(3): 527–538

    Article  Google Scholar 

  8. Deng X.M. (1995). Plane strain near-tip fields for elastic-plastic interface cracks. Int. J. Solids Struct. 32(12): 1727–1741

    Article  MATH  Google Scholar 

  9. Han X.L., Xia Z.H. and Ellyin F. (2001). Interface crack between two different viscoelastic media. Int. J. Solids Struct. 38(44–45): 7981–7997

    Article  MATH  Google Scholar 

  10. Wei P.J. and Zhang S.Y. (2004). Singularity of dynamic stress fields around an interface crack between viscoelastic bodies. Int. J. Fract. 126(2): 165–177

    Article  Google Scholar 

  11. Li Y.D., Zhang H.C., Zhang N. and Dai Y. (2005). Stress analysis of functionally graded beam using effective principal axes. Int. J. Mech. Mater. Des. 2(3–4): 157–164

    Google Scholar 

  12. Klod K. and Michael C. (1997). Initiation of surface and interface edge cracks in functionally graded ceramic thermal barrier coatings. J. Eng. Mater. Tech. 119(2): 148–152

    Article  Google Scholar 

  13. Xiong H.P. (2005). Experimental study on heat insulation performance of functionally gradedmetal/ceramic coatings and their fracture behavior at high surface temperatures. Surf. Coat. Tech. 194(2–3): 203–214

    Article  Google Scholar 

  14. Erdogan F. (1995). Fracture mechanics of functionally graded materials. Compos. Eng. 5(7): 753–770

    Article  Google Scholar 

  15. Delale F. and Erdogan F. (1988). On the mechanical modeling of the interfacial region in bonded half-planes. J. Appl. Mech. 55: 317–324

    Google Scholar 

  16. Konda N. and Erdogan F. (1994). The mixed mode crack problem in a nonhomogeneous elastic medium. Eng. Fract. Mech. 47: 533–545

    Article  Google Scholar 

  17. Chen Y.F. and Erdogan F. (1996). The interface crack problem for a nonhomogeneous coating bonded to a homogeneous substrate. J. Mech. Phys. Solids 44: 771–787

    Article  Google Scholar 

  18. Jin Z.H. and Batra R.C. (1996). Some fracture mechanics concepts in functionally graded materials. J. Mech. Phys. Solids 44(8): 1221–1235

    Article  Google Scholar 

  19. Jin Z.H. and Batra R.C. (1996). Interface cracking between functionally graded coatings and a substrate under antiplane shear. Int. J. Eng. Sci. 34(15): 1705–1716

    Article  MATH  Google Scholar 

  20. Wang B.L., Mai Y.W. and Sun Y.G. (2003). Anti-plane fracture of a functionally graded material strip. Euro. J. Mech. A/Solids 22(3): 357–368

    MATH  Google Scholar 

  21. Wang Y.S., Huang G.Y. and Gross D. (2003). On the mechanical modeling of functionally graded interfacial zone with a Griffith crack: anti-plane deformation. J. Appl. Mech. 70: 676–680

    Article  MATH  Google Scholar 

  22. Li C.Y. and Weng G.J. (2001). Dynamic stress intensity factors of a cylindrical interface crack with a functionally graded interlayer. Mech. Mater. 33: 325–333

    Article  Google Scholar 

  23. Huang G.Y., Wang Y.S. and Gross D. (2002). Fracture analysis of functionally graded coatings: antiplane deformation. Euro. J. Mech. A/Solids 21: 391–400

    Article  MATH  Google Scholar 

  24. Huang G.Y., Wang Y.S. and Gross D. (2003). Fracture analysis of functionally graded coating: plane deformation. Euro. J. Mech. A/Solids 22: 535–544

    Article  MATH  Google Scholar 

  25. Huang G.Y., Wang Y.S. and Yu S.W. (2004). Fracture analysis of a functionally graded interfacial zone under plane deformation. Int. J. Solids Struct. 41: 731–743

    Article  MATH  Google Scholar 

  26. Li Y.D., Jia B., Zhang N., Dai Y. and Tang L.Q. (2006). Anti-plane fracture analysis of functionally graded material infinite strip with finite width. Appl. Math. Mech. 27(6): 773–780

    Article  MATH  Google Scholar 

  27. Li Y.D., Jia B., Zhang N., Tang L.Q. and Dai Y. (2006). Dynamic stress intensity factor of the weak/micro-discontinuous interface crack of a FGM coating. Int. J. Solids Struct. 43: 4795–4809

    Article  MATH  Google Scholar 

  28. Li Y.D., Tan W. and Zhang H.C. (2006). Anti-plane transient fracture analysis of the functionally graded elastic bi-material weak/infinitesimal-discontinuous interface. Int. J. Fract. 142: 163–171

    Google Scholar 

  29. Kim J.H. and Paulino G.H. (2002). Finite element evaluation of mixed-mode stress intensity factor in functionally graded materials. Int. J. Numer. Methods Eng. 53(8): 1903–1935

    Article  MATH  Google Scholar 

  30. Lucia D.C. and Paolo V. (2004). Finite elements for functionally graded Reissner–Mindlin plates. Comput. Methods Appl. Mech. Eng. 193: 705–725

    Article  MATH  Google Scholar 

  31. Kaddouri K., Belhouari M., Bouiadjra B.B. and Serier B. (2006). Finite element analysis of crack perpendicular to bi-material interface: Case of couple ceramic–metal. Comput. Mater. Sci. 35: 53–60

    Article  Google Scholar 

  32. Li Y.D., Zhang H.C. and Tan W. (2006). Fracture analysis of functionally graded weak/micro-discontinuous interface with finite element method. Comput. Mater. Sci. 38: 454–458

    Article  Google Scholar 

  33. Wang X.Y., Zou Z.Z. and Wang D. (1997). On the penny-shaped crack in a nonhomogeneous interlayer of adjoining two different elastic materials. Int. J. Solids Struct. 34: 3911–3921

    Article  MATH  Google Scholar 

  34. Guo L.C., Wu L.Z. and Ma L. (2004). The interface crack problem under a concentrated load for a functionally graded coating–substrate composite system. Compos. Struct. 63: 397–406

    Article  Google Scholar 

  35. Guo L.C., Wu L.Z., Zeng T. and Ma L. (2004). The dynamic fracture behavior of a functionally graded coating–substrate system. Compos. Struct. 64: 433–441

    Article  Google Scholar 

  36. Guo L.C., Wu L.Z., Ma L. and Zeng T. (2004). Fracture analysis of a functionally graded coating-substrate structure with a crack perpendicular to the interface—Part I: Static problem. Int. J. Fract. 127: 21–38

    Article  Google Scholar 

  37. Guo L.C., Wu L.Z., Ma L. and Zeng T. (2004). Fracture analysis of a functionally graded coating-substrate structure with a crack perpendicular to the interface—Part II: Transient problem. Int. J. Fract. 127: 39–59

    Article  Google Scholar 

  38. Erdogan F. (1985). The crack problem for bonded nonhomogeneous materials under antiplane shear loading. J. Appl. Mech. 52: 823–828

    Article  MATH  MathSciNet  Google Scholar 

  39. Chue C.H. and Ou Y.L. (2005). Mode III crack problems for two bonded functionally graded piezoelectric materials. Int. J. Solids Struct. 42: 3321–3337

    Article  MATH  Google Scholar 

  40. Yong H.D. and Zhou Y.H. (2006). Analysis of a mode III crack problem in a functionally graded coating-substrate system with finite thickness. Int. J. Fract. 141: 459–467

    Article  Google Scholar 

  41. Erdogan F. and Gupta G.D. (1972). On the numerical solution of singular integral equations. Q. Appl. Math. 29(4): 525–534

    MATH  MathSciNet  Google Scholar 

  42. Miller M.K. and Guy W.T. (1966). Numerical inversion of the Laplace transform by use of Jacobi polynomials. J. Numer. Anal. 3: 624–635

    Article  MATH  MathSciNet  Google Scholar 

  43. Choi H.J., Lee K.Y. and Jin T.E. (1998). Collinear cracks in a layered half-plane with a graded nonhomogeneous interfacial zone—Part A: Mechanical response. Int. J. Fract. 94(2): 103–122

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Yong Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, YD., Lee, K.Y. & Zhang, N. Dynamic stress intensity factor of a crack perpendicular to the weak-discontinuous interface in a nonhomogeneous coating–substrate structure. Arch Appl Mech 79, 175–187 (2009). https://doi.org/10.1007/s00419-008-0227-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-008-0227-4

Keywords

Navigation