Skip to main content
Log in

Acoustic wave interaction with a laminated transversely isotropic spherical shell with imperfect bonding

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

An exact analysis is carried out to study interaction of a time-harmonic plane-progressive sound field with a multi-layered elastic hollow sphere made of spherically isotropic materials with interlaminar bonding imperfections. A modal state equation with variable coefficients is set up in terms of appropriate displacement and stress functions and their spherical harmonics, ultimately leading to calculation of a global transfer matrix. A linear spring model is adopted to describe the interlaminar adhesive bonding whose effects are incorporated into the global transfer matrix by introduction of proper interfacial transfer matrices. The solution is first used to correlate the perturbation in the material elastic constants of an evacuated and water submerged steel (isotropic) spherical shell to the sensitivity of resonances appearing in the backscattered amplitude spectrum. The backscattering form function, in addition to the acoustic radiation force acting on selected transversely isotropic spherical shells with distinct degrees of material anisotropy, is subsequently calculated and discussed. An illustrative numerical example is given for a multi-layered hollow sphere with two distinct interlaminar interface conditions (i.e., perfectly and imperfectly bonded layers). Limiting cases are considered and fair agreements with solutions available in the literature are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rayleigh L. (1945). The Theory of Sound, vol. II. Dover, New York

    Google Scholar 

  2. Lamb S.H. (1945). Hydrodynamics. Dover, New York

    Google Scholar 

  3. Huang H. (1969). Transient interaction of plane acoustic waves with spherical elastic shell. J. Acoust. Soc. Am. 45: 661–670

    Article  Google Scholar 

  4. Tang S.C. and Yen D.H.Y. (1970). Interaction of a plane acoustic wave with an elastic spherical shell. J. Acoust. Soc. Am. 47: 1325–1333

    Article  Google Scholar 

  5. Lauchle G.C. (1976). Interaction of a spherical acoustic wave with an elastic spherical shell. J. Sound Vib. 44: 37–46

    Article  MATH  Google Scholar 

  6. Gaunaurd G.C. and Wertman W. (1991). Transient acoustic scattering by fluid-loaded elastic shells. Int. J. Solids Struct. 27: 699–711

    Article  Google Scholar 

  7. Ettouney M.M., Daddazio R.P. and DiMaggio F.L. (1991). Wet modes of submerged structures. Part I. Theory, ASME, noise control and acoustics division NCA. Struct. Acoust. 12: 203–211

    Google Scholar 

  8. Hasegawa T., Annou A., Noda H. and Kato M. (1993). Acoustic radiation pressure acting on spherical and cylindrical shells. J. Acoust. Soc. Am. 93: 154–161

    Article  Google Scholar 

  9. Kaduchak G. and Loeffler C.M. (1998). Relationship between material parameters and target strength of fluid-filled spherical shells in water: calculations and observations. IEEE J. Oceanic Eng. 23: 26–30

    Article  Google Scholar 

  10. Tang W. and Fan J. (2000). Resonance radiation theory of a submerged elastic spherical shell. Acta Acust. 25: 308–312

    Google Scholar 

  11. Yan Z., Jiang J. and Yan M. (2000). Numerical investigation on sound transmission through submerged fluid-filled elastic shell. J. Shanghai Jiaotong Univ. 34: 1066–1068

    Google Scholar 

  12. Liang C.-C., Hsu C.-Y. and Lai W.-H. (2001). Study of transient responses of a submerged spherical shell under shock waves. Ocean Eng. 28: 71–94

    Article  Google Scholar 

  13. Fan J. and Tang W.L. (2001). Echoes from double elastic spherical shell covered with viscoelastic materials in water. Acta Acust. 26: 302–306

    Google Scholar 

  14. Scandrett C. (2002). Scattering and active acoustic control from a submerged spherical shell. J. Acoust. Soc. Am. 111: 893–907

    Article  Google Scholar 

  15. Gao F., Hu H. and Hu Y. (2004). Effects of an outer layer and its damping on acoustic scattering characteristics of a double-layered spherical shell immersed in water. J. Huazhong Univ. Sci. Technol. (Nat. Sci. Ed.) 32: 102–104

    Google Scholar 

  16. Li W., Liu G.R. and Varadan V.K. (2005). Estimation of radius and thickness of a thin spherical shell in water using the midfrequency enhancement of a short tone burst response. J. Acoust. Soc. Am. 118: 2147–2153

    Article  Google Scholar 

  17. Mitri F.G. (2005). Acoustic radiation force acting on absorbing spherical shells. Wave Motion 43: 12–19

    Article  MathSciNet  Google Scholar 

  18. Mitri F.G. (2005). Acoustic radiation force acting on elastic and viscoelastic spherical shells placed in a plane standing wave field. Ultrasonics 43: 681–691

    Article  Google Scholar 

  19. Mitri F.G. (2006). Calculation of the acoustic radiation force on coated spherical shells in progressive and standing plane waves. Ultrasonics 44: 244–258

    Article  Google Scholar 

  20. Tesei A., Fox W.L.J., Maguer A. and Lovik A. (2000). Target parameter estimation using resonance scattering analysis applied to air-filled, cylindrical shells in water. J Acoust. Soc. Am. 108: 2891–2910

    Article  Google Scholar 

  21. Honarvar F. and Sinclair A.N. (1998). Nondestructive evaluation of cylindrical components by resonance acoustic spectroscopy. Ultrasonics 36: 845–854

    Article  Google Scholar 

  22. Talmant M. and Batard H. (1994). Material characterization and resonant scattering by cylinders. Proc. IEEE Ultrason. Symp. 3: 1371–1380

    Google Scholar 

  23. Migliori A. and Sarrao J.L. (1997). Resonant Ultrasound Spectroscopy: Applications to Physics, Materials Measurements and Nondestructive Evaluation. Wiley, New York

    Google Scholar 

  24. Gaunaurd G.C. and Werby M.F. (1990). Acoustic resonance scattering by submerged elastic shells. Appl. Mech. Rev. 43(8): 171–207

    Google Scholar 

  25. Überall H. (1992). Acoustic Resonance Scattering. Gordon and Breach Science, Philadelphia, PN

    Google Scholar 

  26. Veksler N.D. (1993). Resonance Acoustic Spectroscopy. Springer Series on Wave Phenomena, Berlin

    Google Scholar 

  27. Raju P.P. (1975). On shallow shells of transversely isotropic materials. J. Press. Vessel Technol. Trans. ASME Ser J 97: 185–191

    Google Scholar 

  28. Maiti M. (1975). Stress in anisotropic nonhomogeneous sphere. J. Eng. Mech. 101: 101–108

    Google Scholar 

  29. Buchanan G.R. and Ramirez G.R. (2002). A note on the vibration of transversely isotropic solid spheres. J. Sound Vib. 253(3): 724–732

    Article  Google Scholar 

  30. Amburtsumian, S.A.: Theory of Anisotropic Shells. NASA Tech. Transl. F–118 (1964)

  31. Amburtsumian S.A. (1966). Some current aspects of the theory of anisotropic layered shells. In: Abramsone, N. (eds) Applied Mechanics Surveys, pp. Spartan Books, Macmillan, Washington, D.C.

    Google Scholar 

  32. Khachaturian A.A. (1960). On Stability and Vibration of a Transversely Isotropic Spherical Shell. Izv. Akad. Nauk. Arm SSSR, Ser. Fiz. Mat. Nauk 8(4): 19–28

    Google Scholar 

  33. Baker W.E. and Hoppmann W.H. (1961). Extensional vibrations of elastic orthotropic spherical shells. Trans. ASME, J. Appl. Mech. 28: 229–237

    MATH  MathSciNet  Google Scholar 

  34. Ramakrishnan C.V. and Shah A.H. (1970). Vibration of an aeolotropic spherical shell. J. Acoust. Soc. Am. 47: 1366–1374

    Article  MATH  Google Scholar 

  35. Naghieh M. and Hayek S.I. (1971). Transmission of acoustic waves through submerged orthotropic spherical shells. J. Acoust. Soc. Am. 50: 1334–1342

    Article  Google Scholar 

  36. Cohen H. and Shah A.H. (1972). Free vibrations of a spherically isotropic hollow sphere. Acustica 26: 329–333

    MATH  Google Scholar 

  37. Shul’ga N.A., Grigorenko A.Y. and Efimova T.L. (1988). Free non-axisymmetric oscillations of a thick-walled, nonhomogeneous, transversely isotropic, hollow sphere. Soviet Appl. Mech. 24: 439–444

    Article  MATH  Google Scholar 

  38. Shul’ga N.A., Grigorenko A.Y., Efimova T.L. and Ramskaya E.I. (1986). Structure of the frequency spectrum of nonaxisymmetric vibrations of a transversely isotropic hollow ball. Vychislitel’naya i Prikladnaya Matematika 59: 32–35

    Google Scholar 

  39. Narasimhan M.C. (1992). Dynamic response of laminated orthotropic spherical shells. J. Acoust. Soc. Am. 91: 2714–2720

    Article  Google Scholar 

  40. Ding H.J. and Chen W.Q. (1996). Natural frequencies of an elastic spherically isotropic hollow sphere submerged in a compressible fluid medium. J. Sound Vib. 192(1): 173–198

    Article  MathSciNet  Google Scholar 

  41. Chen W.Q. and Ding H.J. (1999). Natural frequencies of a fluid-filled anisotropic spherical shell. J. Acoust. Soc. Am. 105: 174–182

    Article  Google Scholar 

  42. Wang X., Lu G. and Guillow S.R. (2002). Stress wave propagation in orthotropic laminated thick-walled spherical shells. Int. J. Solids Struct. 39: 4027–4037

    Article  MATH  Google Scholar 

  43. Stavsky Y. and Greenberg J.B. (2003). Radial vibrations of orthotropic laminated hollow spheres. J. Acoust. Soc. Am. 113: 847–851

    Article  Google Scholar 

  44. Chen W.Q. and Ding H.J. (2001). Free vibration of multi-layered spherically isotropic hollow spheres. Int. J. Mech. Sci. 43: 667–680

    Article  MATH  Google Scholar 

  45. Hasheminejad S.M. and Maleki M. (2008). Acoustic resonance scattering from a submerged anisotropic sphere. Acoust. Phys. 54: 168–179

    Article  Google Scholar 

  46. Li W., Liu G.R. and Varadan V.K. (2005). Estimation of radius and thickness of a thin spherical shell in water using the midfrequency enhancement of a short tone burst response. J. Acoust. Soc. Am. 118: 2147–2153

    Article  Google Scholar 

  47. Abeysekera S.S., Naidu P.S., Leung Y.-H. and Lew H. (1998). Underwater target classification scheme based on the acoustic backscatter form function. ICASSP, IEEE Int. Conf. Acoust. Speech Signal Processing Proc. 4: 2513–2516

    Google Scholar 

  48. Nightingale K., Soo M.S., Nightingale R. and Trahey G. (2002). Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility. Ultras. Med. Biol. 28: 227–235

    Article  Google Scholar 

  49. Fatemi M. and GreenLeaf J.F. (1998). Ultrasound stimulated vibro-acoustic spectroscopy. Science 280: 82–85

    Article  Google Scholar 

  50. Fatemi M. and GreenLeaf J.F. (1999). Vibro-acoustography: an imaging modality based on ultrasound-stimulated acoustic emission. Natl. Acad. Sci. USA 96: 6603–6608

    Article  Google Scholar 

  51. Dunn F., Averbach A.J. and O’Brein D.J. (1977). A primary method for the determination of ultrasonic intensity with the elastic sphere radiometer. Acustica 38: 58–61

    Google Scholar 

  52. Pierce A.D. (1991). Acoustics; An Introduction to its Physical Principles and Applications. American Institute of Physics, New York

    Google Scholar 

  53. Morse P.M. and Ingard K.U. (1968). Theoretical Acoustics. McGraw-Hill, New York

    Google Scholar 

  54. Abramowitz M. and Stegun I.A. (1964). Handbook of Mathematical Functions. National Bureau of Standards, Washington, DC

    MATH  Google Scholar 

  55. Love A.E.H. (1944). A Treatise on the Mathematical Theory of Elasticity. Dover, New York

    MATH  Google Scholar 

  56. Lekhnitskii S.G. (1981). Theory of Elasticity of an Anisotropic Body. Mir Publishers, Moscow

    MATH  Google Scholar 

  57. Ding, H.J., Chen, W.Q., Zhang, L.: Elasticity of Transversely Isotropic Materials. Series: Solid Mechanics and Its Applications, vol. 126. Springer, Berlin (2006)

  58. Hasheminejad S.M. and Maleki M. (2006). Interaction of a plane progressive sound wave with a functionally graded spherical shell. Ultrasonics 45: 165–177

    Article  Google Scholar 

  59. Rokhlin S.I. and Wang Y.J. (1991). Analysis of boundary conditions for elastic wave interaction with an interface between two solids. J. Acoust. Soc. Am. 89: 503–515

    Article  Google Scholar 

  60. Martin P.A. (1992). Boundary integral equations for the scattering of elastic waves by elastic inclusions with thin interface layers. J. Nondestruct. Eval. 11: 167–174

    Article  Google Scholar 

  61. Huang W., Rokhlin S.I. and Wang Y.J. (1997). Analysis of different boundary condition models for study of wave scattering from fiber–matrix interphases. J. Acoust. Soc. Am. 101: 2031–2042

    Article  Google Scholar 

  62. Liu D., Xu L. and Lu X. (1994). Stress analysis of imperfect composite laminates with an interlaminar bonding theory. Int. J. Numer. Meth. Eng. 37: 2819–2839

    Article  MATH  Google Scholar 

  63. Hashin Z. (1991). The spherical inclusion with imperfect interface. Trans. ASME, J. Appl. Mech. 58: 444–449

    Article  Google Scholar 

  64. Yosioka K. and Kawasima Y. (1955). Acoustic radiation pressure on a compressible sphere. Acustica 5: 167–173

    Google Scholar 

  65. Sammelmann G.S., Trivett D.H. and Hackman R.H. (1989). The acoustic scattering by a submerged, spherical shell. I: The bifurcation of the dispersion curve for the spherical antisymmetric Lamb wave. J. Acoust. Soc. Am. 85: 114–124

    Article  Google Scholar 

  66. Gaunaurd G.C. and Werby M.F. (1991). Lamb and creeping waves around submerged spherical shells resonantly excited by sound scattering. II: Further applications. J. Acoust. Soc. Am. 89: 1656–1667

    Article  Google Scholar 

  67. Graff K.F. (1991). Wave Motion in Elastic Solids. Dover Publications, New York

    Google Scholar 

  68. Leiderman R. and Braga A.M.B. (2005). Scattering of ultrasonic waves by defective adhesion interfaces in submerged laminated plates. J. Acoust. Soc. Am. 118: 2154–2166

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyyed M. Hasheminejad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasheminejad, S.M., Maleki, M. Acoustic wave interaction with a laminated transversely isotropic spherical shell with imperfect bonding. Arch Appl Mech 79, 97–112 (2009). https://doi.org/10.1007/s00419-008-0212-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-008-0212-y

Keywords

Navigation