Skip to main content
Log in

An analytically-numerical approach for the analysis of an interface crack with a contact zone in a piezoelectric bimaterial compound

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

An interface crack with an artificial contact zone at the right-hand side crack tip between two dissimilar finite-sized piezoelectric materials is considered under remote mixed-mode loading. To find the singular electromechanical field at the crack tip, an asymptotic solution is derived in connection with the conventional finite element method. For mechanical loads, the stress intensity factors at the singular points are obtained. As a particular case of this solution, the contact zone model (in Comninou’s sense) is derived. A simple transcendental equation and an asymptotic formula for the determination of the real contact zone length are derived. The dependencies of the contact zone lengths on external load coefficients are illustrated in graphical form. For a particular case of a short crack with respect to the dimensions of the bimaterial compound, the numerical results are compared to the exact analytical solutions, obtained for a piezoelectric bimaterial plane with an interface crack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ABAQUS/Standard: Version 6.1 Karlsson & Sorensen Inc., Hibbith (2000)

  2. Beom H.G. and Atluri S.N. (1996). Near-tip fields and intensity factors for interfacial cracks in dissimilar anisotropic piezoelectric media. Int. J. Fract. 75: 163–183

    Article  Google Scholar 

  3. Comninou M. (1977). The interface crack. J. Appl. Mech. Trans. ASME 44: 631–636

    MATH  Google Scholar 

  4. Dundurs J. and Gautesen A.K. (1988). An opportunistic analysis of the interface crack. Int. J. Fract. 36: 151–159

    Article  Google Scholar 

  5. Gao C.F. and Wang M.Z. (2000). Collinear permeable cracks between dissimilar piezoelectric materials. Int. J. Solids Struct. 37: 4949–4967

    Article  Google Scholar 

  6. Govorukha V.B. and Loboda V.V. (2000). Contact zone models for an interface crack in a piezoelectric material. Acta Mech. 140: 233–246

    Article  MATH  Google Scholar 

  7. Govorukha V.B., Munz D. and Kamlah M. (2000). On the singular integral equations approach to the interface crack problem for piezoelectric materials. Arch Mech. 52: 247–273

    MATH  Google Scholar 

  8. Govorukha V. and Kamlah M. (2004). Asymptotic fields in the finite element analysis of electrically permeable interface cracks in piezoelectric bimaterials. Arch. Appl. Mech. 74: 92–101

    MATH  Google Scholar 

  9. Gruebner O., Kamlah M. and Munz D. (2003). Finite element analysis of cracks in piezoelectric materials taking into account the permittivity of crack medium. Eng. Fract. Mech. 70: 1399–1413

    Article  Google Scholar 

  10. Herrmann K.P. and Loboda V.V. (2000). Fracture-mechanical assessment of electrically permeable interface cracks in piezoelectric bimaterials by consideration of various contact zone models. Arch. Appl. Mech. 70: 127–143

    Article  MATH  Google Scholar 

  11. Herrmann K.P., Loboda V.V. and Govorukha V.B. (2001). On contact zone models for an electrically impermeable interface crack in a piezoelectric bimaterial. Int. J. Fract. 111: 203–227

    Article  Google Scholar 

  12. Kuna M. (1998). Finite element analyses of crack problems in piezoelectric structures. Comput. Mater. Sci. 13: 67–80

    Article  Google Scholar 

  13. Kuna M. (2006). Finite element analyses of cracks in piezoelectric structures—a survey. Arch. Appl. Mech. 76: 725–745

    Article  MATH  Google Scholar 

  14. Kuo C.M. and Barnett D.M. (1991). Stress singularities of interfacial cracks in bounded piezoelectric half-spaces. In: Wu, J.J., Ting, T.C.T. and Barnet, D.M. (eds) Modern theory of anisotropic elasticity and applications, pp 33–50. SIAM Proc. Series, Philadelphia

    Google Scholar 

  15. Ma L.F. and Chen Y.H. (2001). Weight functions for interface cracks in dissimilar anisotropic piezoelectric materials. Int. J. Fract. 110: 263–279

    Article  Google Scholar 

  16. Pak Y.E. (1992). Linear electro-elastic fracture mechanics of piezoelectric materials. Int. J. Fract. 54: 79–100

    Article  Google Scholar 

  17. Park S.B. and Sun C.T. (1995). Effect of electric field on fracture of piezoelectric ceramics. Int. J. Fract. 70: 203–216

    Article  Google Scholar 

  18. Parton V.Z. (1976). Fracture mechanics of piezoelectric materials. Acta Astronaut. 3: 671–683

    Article  MATH  Google Scholar 

  19. Qin Q.H. and Yu S.W. (1997). An arbitrarily-oriented plane crack terminating at the interface between dissimilar piezoelectric materials. Int. J. Solids Struct. 34: 581–590

    Article  MATH  Google Scholar 

  20. Qin Q.H. and Mai Y.W. (1999). A closed crack tip model for interface cracks in thermopiezoelectric materials. Int. J. Solids Struct. 36: 2463–2479

    Article  MATH  Google Scholar 

  21. Scherzer M. and Kuna M. (2004). Combined analytical and numerical solution of 2D interface corner configurations between dissimilar piezoelectric material. Int. J. Fract. 127: 61–99

    Article  Google Scholar 

  22. Suo Z., Kuo C.M., Barnet D.M. and Willis J.R. (1992). Fracture mechanics for piezoelectric ceramics. J. Mech. Phys. Solids 40: 739–765

    Article  MATH  MathSciNet  Google Scholar 

  23. Ting T.C.T. (1986). Explicit solution and invariance of the singularities at an interface crack in anisotropic composites. Int. J. Solids Struct. 22: 965–983

    Article  MATH  MathSciNet  Google Scholar 

  24. Williams M.L. (1959). The stresses around a fault or crack in dissimilar media. Bull. Seismol. Soc. Am. 49: 199–204

    Google Scholar 

  25. Wu C.C., Sze K.Y. and Huang Y.Q. (2001). Numerical solutions on fracture of piezoelectric materials by hybrid element. Int. J. Solids Struct. 38: 4315–4329

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Govorukha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Govorukha, V., Kamlah, M. An analytically-numerical approach for the analysis of an interface crack with a contact zone in a piezoelectric bimaterial compound. Arch Appl Mech 78, 575–586 (2008). https://doi.org/10.1007/s00419-007-0179-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-007-0179-0

Keywords

Navigation