Skip to main content
Log in

A theoretical model for surface bone remodeling under electromagnetic loads

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

A theoretical model for surface bone remodeling under electromagnetic loads is proposed in this paper. In the model, surface bone remodeling is assumed to be related to growth factors. Growth factors in latent form in osteocytes are released to the bone fluid after the osteocytes are absorbed by osteoclasts, and then regulate the bone formation process. At the same time, environmental loadings can influence the generation of growth factors. This paper shows how surface bone remodeling is triggered under the influence of growth factors. Based on this hypothesis, a computational model is established that simulates the bone coupling remodeling process, including internal and surface bone remodeling. The effects of various loadings, including electrical and magnetic loadings, are simulated and compared. The interactions between internal and surface bone remodeling are investigated via the numerical method. The results indicate that an electromagnetic field can strongly influence the bone remodeling process and that the remodeling process will be altered after surface bone remodeling is triggered, compared to the sole effect of the internal remodeling process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bessett C.A., Valdes M.G., Hernandez E. (1982) Modification of fracture repair with selected pulsing electromagnetic fields. J. Bone Joint Surg. 64: 888–895

    Google Scholar 

  2. Mcleod K.J., Rubin C.T. (1992) The effect of low-frequency electrical fields on osteogenesis. J. Bone Joint Surg. 74: 920–929

    Google Scholar 

  3. Giordano N., Battisti E. (2001) Effect of electromagnetic fields on bone mineral density and biochemical markers of bone turnover in osteoporosis: a single-blind, randomized pilot study. Curr. Ther. Res. 62: 187–193

    Article  Google Scholar 

  4. Frost H.M. (1998) Changing concepts in skeletal physiology: Wolff’s Law, the Mechanostat, and the “Utah Paradigm.” Am. J. Hum. Biol. 10: 599–605

    Article  Google Scholar 

  5. Frost H.M. (1964) Dynamics of bone remodeling. In: Frost H.M. (ed.) Bone biodynamics. Little, Brown and Co., Boston

    Google Scholar 

  6. Cowin S.C., Hegedus D.M. (1976) Bone remodeling I: Theory of adaptive elasticity. J. Elasticity 6: 313–326

    Article  MATH  MathSciNet  Google Scholar 

  7. Hegedus D.H., Cowin S.C. (1976) Bone remodeling II: Small strain adaptive elasticity. J. Elasticity 6: 337–352

    MATH  MathSciNet  Google Scholar 

  8. Cowin S.C., Nachlinger R.R. (1978) Bone remodeling III: Uniqueness and stability in adaptive elasticity theory. J. Elasticity 8: 285–295

    Article  MATH  MathSciNet  Google Scholar 

  9. Martin R.B. (1995) A mathematical model for fatigue damage repair and stress fracture in osteonal bone. J. Orthop. Res. 13: 309–316

    Article  Google Scholar 

  10. Beaupré, G.S., Orr, T.E., Carter, D.R.: An approach for time-dependent bone remodeling and remodeling: theoretical development. J. Orthop. Res. 651–661 (1990a)

  11. Beaupré G.S., Orr T.E., Carter D.R. (1990b) An approach for time-dependent bone remodeling and remodeling: Application: A preliminary remodeling simulation. J. Orthop. Res. 8: 662–670

    Article  Google Scholar 

  12. Gjelsvik A. (1973a) Bone remodeling and piezoelectricity—I. J. Biomech. 6: 69–77

    Article  Google Scholar 

  13. Gjelsvik A. (1973b) Bone remodeling and piezoelectricity—II. J. Biomech. 6: 187–197

    Article  Google Scholar 

  14. Qin Q.H., Ye J.Q. (2004) Thermolectroelastic solutions for internal bone remodeling under axial and transverse loads. Int. J. Solids and Struct. 41: 2447–2460

    Article  MATH  Google Scholar 

  15. Qin Q.H., Qu C.Y., Ye J.Q. (2005) Thermolectroelastic solutions for surface bone remodeling under axial and transverse loads. Biomaterials 26: 6798–6810

    Article  Google Scholar 

  16. Qu, C.Y., Qin, Q.H., Kang, Y.L.: Thermomagnetoelectroelastic prediction of the bone surface remodeling under axial and transverse loads. In: Proceedings of the 9th International Conference on Inspection, Appraisal, Repairs & Maintenance of Structures, 373–380, Fuzhou, China, October 20–21 (2005)

  17. Qu C.Y., Qin Q.H., Kang Y.L. (2006) A hypothetical mechanism of bone remodeling and remodeling under electromagnetic loads. Biomaterials 27: 4050–4057

    Article  Google Scholar 

  18. Fukada E., Yasuda I. (1957) On the piezoelectric effect of bone. J. Physiol. Soc. Jpn. 12: 1158–1162

    Article  Google Scholar 

  19. Frost H.M. (1987) The mechanostat: a proposed pathogenic mechanism of osteoporosis and the bone mass effects of mechanical and nonmechanical agents. Bone 2: 73–85

    Google Scholar 

  20. Frost H.M. (2003) Bone’s mechanostat: A 2003 update. Anat. Rec. 275A: 1081–1101

    Article  Google Scholar 

  21. Frost H.M. (1990) Structural adaptations to mechanical usage (SATMU): 1. Redefining Wolff’s Law: The bone remodeling problem. Anat. Rec. 226: 403–413

    Google Scholar 

  22. Rubin C.T., Lanyon L.E. (1985) Regulation of bone mass by mechanical strain magnitude. Calcified. Tissue Int. 37: 411–417

    Article  Google Scholar 

  23. Jee W.S.S., Li X.J., Ke H.Z. (1991) Skeletal adaptations to mechanical usage in the rat. Cells. Mat. S1: 131–142

    Google Scholar 

  24. Batra G.S., Hainey L., Freemont A.J., Andrew G., Saunders P.T., Hoyland J.A., Braidman I.P. (2003) Evidence for ellspecific changes with age in expression of oestrogen receptor (ER) alpha and beta in bone fractures from men and women. J. Pathol. 200: 65–73

    Article  Google Scholar 

  25. Oursler, M.J., Kassem, M., Turner, R., Riggs, B.L., Spelsberg, T.C.: Regulation of bone cell function by gonadal steroids. In: Marcus, R., Feldman, D., Kelsey, J. (eds.) Osteoporosis, pp. 237–260. Academic, San Diego (1996)

  26. Skerry T.M., Bitensky L., Chayen J., Lanyon L.E. (1989) Early strain-related changes in enzyme activity in osteocytes following bone loading in vivo. J. Bone Miner. Res. 4: 783–788

    Article  Google Scholar 

  27. Klein-Nulend J., Van der Plas A., Semeins C.M., Ajubi N.E., Frangos J.A., Nijweide P.J., Burger E.H. (1995) Sensitivity of osteocytes to biomechanical stress in vitro. FASEB J. 9: 441–445

    Google Scholar 

  28. Bakker A., Klein-Nulend J., Burger E. (2004) Shear stress inhibits while disuse promotes osteocyte apoptosis. Biochem. Bioph. Res. 320: 1163–1168

    Article  Google Scholar 

  29. Mullender M.G., Huiskes R. (1995) A proposal for the regulatory mechanism of Wolff’s law. J. Orthop. Res. 13: 503–512

    Article  Google Scholar 

  30. Nielsen H.M., Andreassen T.T., Leder T. (1994) Local injection of TGF-β increasing the strength of tibial fracture in the rat. Acta. Orthop. Scand. 65(1): 37–41

    Article  Google Scholar 

  31. Asahina J., Waranabe M., Sakurai N. (1997) Repair of bone defect in primate mandible using a bone morphogenetic protein (BMP)-hydroxyapatite-collagen composite. J. Med. Dent. Sci. 44(3): 63–70

    Google Scholar 

  32. Weinreb M., Suponiyzky I., Keila S. (1997) Systematic administration of an anabolic dose of PGE2 in young rats increases the osteogenic capacity of bone marrow. Bone 20(6): 521–526

    Article  Google Scholar 

  33. Lammens J., Liu Z., Aerssans J. (1998) Distraction bone healing versus osteotomy healing: A comparative biochemical analysis. J. Bone. Miner. Res. 13(2): 279–286

    Article  Google Scholar 

  34. Fitzsimmons R.J., Strong D.D., Mohan S. (1992) Low-amplitude, low-frequency electric field-stimulated bone cell proliferation may in part be mediated by increased IGF-I release. J. Cell Physiol. 150(1): 84–89

    Article  Google Scholar 

  35. Nagai M., Ots M. (1994) Pulsing electromagnetic fields stimulates mRNA expression of bone morphogenetic protem-2 and −4. J. Dent. Res. 73(10): 1601–1605

    Google Scholar 

  36. Zhung H.M., Wei W., Seldes R.M. (1997) Electrical stimulation induces the level of TGF-β mRNA in osteoblastic cells by a mechanism involving a calcium/ calmodulin pathway. Biochem. Bioph. Res. 237(2): 225–229

    Article  Google Scholar 

  37. Currey J.D. (1988) The effect of porosity and mineral content on the Young’s modulus of elasticity of compact bone. J. Biomech. 21: 131–139

    Article  Google Scholar 

  38. Hillsley M.V., Frangos J.A. (1994) Bone tissue engineering: The role of interstitial fluid flow. Biotechnol. Bioeng. 43: 573–581

    Article  Google Scholar 

  39. Frost, H.M. (2002) Emerging views about “osteoporosis,” bone health, strength, fragility, and their determinants. J. Bone. Miner. Metab. 20: 319–325

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Q. He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, X.Q., Qu, C. & Qin, Q.H. A theoretical model for surface bone remodeling under electromagnetic loads. Arch Appl Mech 78, 163–175 (2008). https://doi.org/10.1007/s00419-007-0144-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-007-0144-y

Keywords

Navigation