Skip to main content
Log in

Structural effect in the creep behavior of thermoplastic pressure pipes at high temperature – role of geometrical defects

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Failure mechanisms such as local cavitation observed in crystalline thermoplastics pipes submitted to low constant pressure are likely to be induced by microstructure heterogeneity and time-dependent macroscopic stress fields. This study on poly(vinylidene) fluoride (PVDF) focuses on the latter, simulating the long-term creep behavior of homogeneous viscous pipes with finite-element calculations. Stress and strain distributions are evaluated just after loading and their evolution with time is considered. The hydrostatic stress is analyzed in relation to the onset of cavitation. The detrimental consequences of thickness defects due to extrusion on the onset of cavitation are also established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brown N., Lu X. et al. (1991). Slow crack growth in polyethylene – a review. Makromol. Chemei, Macromol. Symp. 41:55–67

    Google Scholar 

  2. Lu X., Brown N. (1992). A test for slow crack growth failure in polyethylene under a constant load. Polym. Testing 11:309–319

    Article  Google Scholar 

  3. Rose L.J., Channell A.D., Frye C.J., Capaccio G. (1994). Slow crack growth in polyethylene: a novel predictive model based on the creep of craze fibrils. J. Appl. Polym. Sci. 54:2119–2124

    Article  Google Scholar 

  4. Plummer C.J.G., Goldberg A. et al. (2001). Micromechanisms of slow crack growth in polyethylene under constant tensile loading. Polymer 42:9551–9564

    Article  Google Scholar 

  5. Brown N., Huang Y.L. et al. (1992). The fundamental material parameters that govern slow crack growth in linear polyethylenes. Plast. Rubber Compos. Process. Appl. 17:255–258

    Google Scholar 

  6. Barry D.B., Delatycki O. (1992). The effect of molecular structure and polymer morphology on the fracture resistance of high density polyethylene. Polymer 33:1261–1265

    Article  Google Scholar 

  7. Challier M., Besson J. et al. (2006). Damage and fracture of polyvinylidene fluoride (PVDF) at 20°C: experiments and modelling. Eng. Fract. Mech. 73:79–90

    Article  Google Scholar 

  8. Castagnet, S., Deburck, Y., to be published in Polym. Eng. Sci.

  9. Hamouda H.B.H., Simoes-Betbeder M. et al.(2001). Creep damage mechanisms in polyethylene gas pipes. Polymer 42:5425–5437

    Article  Google Scholar 

  10. Gacougnolle J.L., Castagnet S., Werth M. (2006). Post-mortem analysis of failure in PolyVinylidene Fluoride pipes tested under constant pressure in the slow crack growth regime. Eng. Fail. An. 13:96–109

    Article  Google Scholar 

  11. Reddy D.V., Ataoglu S. (2004). Analysis of jointed HDPE pipe. J. Adv. Mater. 36:43–50

    Google Scholar 

  12. Popelar C.H., Evans D. (2004). Creep ovalization and buckling of a linear viscoelastic externally pressurized pipe. J. Press. Vessel Technol. 126:208–215

    Article  Google Scholar 

  13. Chuntao Zhang I.D., Moore I.D. (1998). Nonlinear finite element analysis for thermoplastic pipes. Transp. Res. Rec. 1624:225–230

    Google Scholar 

  14. Farshad M., Flueler P. (1996). Buckling resistance of polymer pipes under hydrostatic pressure. Plast. Rubber Compos. Process. Appl. 25:373–379

    Google Scholar 

  15. Dhar A.S., Moore I.D., McGrath T.J. (2004). Two-dimensional analyses of thermoplastics culvert deformations and strains. J. Geoenviron. Eng. 130:199–208

    Article  Google Scholar 

  16. Schafer B.W., McGrath T.J. (2003). Buried corrugated thermoplastic pipe. Transp. Res. Rec. 1849:135–141

    Google Scholar 

  17. Dhar A.S., Moore I.D. (2002). Corrugated high-density polyethylene pipe; laboratory testing and two-dimensional analysis to develop limit states design. Transp. Res. Rec. 1814:157–163

    Google Scholar 

  18. Reddy D.V., Ahn W.S., Ataoglu S. (2004). Investigation of flexural creep for high density polyethylene pipe. J. Adv. Mater. 36:18–24

    Google Scholar 

  19. Gent A.N., Lindley P.B. (1959). Internal rupture of bonded rubber cylinders in tension. Proc. R. Soc. Lond. A. 249:195–205

    Article  Google Scholar 

  20. Horgan C.O., Abeyaratne R. (1986). A bifurcation problem for a compressible nonlinearly elastic medium: growth of a micro-void. J. Elasticity 16:189–200

    Article  MATH  MathSciNet  Google Scholar 

  21. Fond C., Lobbrecht A., Schirrer R. (1996). Polymers thoughened with rubber microspheres; an analytical solution for stresses and strains in the rubber particles at equilibrium and rupture. Int. J. Fract. 77:141–159

    Article  Google Scholar 

  22. Castagnet S., Girault S., Gacougnolle J.L., Dang P. (2000). Cavitation in strained PVDF: mechanical and X-Rays experimental studies. Polymer 41:7523–7530

    Article  Google Scholar 

  23. André-Castagnet S., Tencé-Girault S. (2002). Relationships between mechanical tensile behaviour and micromechanisms in poly(vinylidene fluoride) at high temperatures: influence of the molecular weight distribution. J. Macromol. Sci. B41:957–976

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Castagnet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castagnet, S., Grandidier, J.C. Structural effect in the creep behavior of thermoplastic pressure pipes at high temperature – role of geometrical defects. Arch Appl Mech 76, 567–578 (2006). https://doi.org/10.1007/s00419-006-0070-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-006-0070-4

Keywords

Navigation