Skip to main content
Log in

Discrete Models of a Class of Isolation Systems

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this paper, a class of isolation systems with rigid limiters has been considered. For this class of systems, some general discrete-time models described by means of some impact Poincaré maps have been established. Two examples: a simple isolation system of one-stage and a real isolation system of two-stages have been investigated. The calculated results show that those models can reveal complex nonlinear behaviors. And even a small random perturbation may change the dynamical character of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bishop S.R. (1994). Impact oscillators. Phil Trans R Soc Lond A 347:347–351

    MATH  Google Scholar 

  2. Ibrahim, R.A., Sayad, M.A.: Nonlinear interaction of structural systems involving liquid sloshing impact loading. In: Pfeiffer, F. (ed) Proceedings of the IUTAM symposium on unilateral multibody dynamics, Munich (1998)

  3. Bapat C.N. (1998). Periodic motions of an impact oscillator. J Sound Vib 209(1):43–60

    Article  Google Scholar 

  4. Blazejczyk B., Kapitaniak T., Wojewoda J., Barron R. (1994). Experimental observation of intermittent chaos in a mechanical system with impacts. J Sound Vib 178:272–275

    Article  Google Scholar 

  5. Chatterjee S., Mallik A.K. (1996). Bifurcations and chaos in autonomous self-excited oscillators. J Sound Vib 193(5):1003–1014

    Article  Google Scholar 

  6. Gontier C., Toulemonde C. (1997). Approach to the periodic and chaotic behaviour of the impact oscillator by a continuation method. Eur J Mech A/Solids 16(1):141–163

    MathSciNet  MATH  Google Scholar 

  7. Karyeaclis M.P., Caughey T.K. (1989a). Stability of a semi-active impact damper; part 1-Global behaviour. ASME J Appl Mech 56:926–929

    Article  MathSciNet  MATH  Google Scholar 

  8. Karyeaclis M.P., Caughey T.K. (1989b). Stability of a semi-active impact damper; part 2-periodic solutions. ASME J Appl Mech 56:930–940

    Article  MathSciNet  MATH  Google Scholar 

  9. Kozlov V.V., Treshchev D.V. (1991). Billiards. A genetic introduction to the dynamics of systems with impacts. Amer Mathematical Society, Providence (NY)

    MATH  Google Scholar 

  10. Sung C.K., Yu W.S. (1992). Dynamics of a harmonically excited impact damper: bifurcation and chaotic motion. J Sound Vib 158:317–329

    Article  MathSciNet  MATH  Google Scholar 

  11. Sung P.C., Shaw S.W. (1988). The dynamics of an impact print hammer. J Vib Acoust Stress Reliability Des 110:193–200

    Google Scholar 

  12. Feng Q., Pfeiffer F. (1998). Stochastic model on a rattling system. J Sound Vib 215(3):439–453

    Article  Google Scholar 

  13. Pfeiffer F. (1988). Seltsame Attraktoren in Zahradgetrieben. Ing.-Archiv 58:113–125

    Article  Google Scholar 

  14. Pfeiffer F., Kunert A. (1990). Rattling models from deterministic to stochastic processes. Nonlinear Dynamics 1:63–74

    Article  Google Scholar 

  15. Pfeiffer F. (1999). Unilateral problems of dynamics. Arch Appl Mech 69(8):503–527

    Article  MATH  Google Scholar 

  16. Brogliato B. (1999). Nonsmooth mechanics. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  17. Delassus E. (1923). Sur les lois du frottement de glissement. Bull Soc Math fr 51:22–33

    MathSciNet  MATH  Google Scholar 

  18. Kapitaniak T. (1988). Chaos in systems with noise. World Scientific, Singapore

    MATH  Google Scholar 

  19. Feng Q., He H. (2003). Modeling of the mean Poincaré map on a class of random impact oscillators. Eur J Mech A/Solids 22:267–281

    Article  MathSciNet  MATH  Google Scholar 

  20. Klotter K. (1980). Technische Schwingungslehre, Erster Band: Einfache Schwinger, Teil B: Nichtlinear Schwingungen. Springer, Berlin Heidelberg New York

    Google Scholar 

  21. Bell D.J., Cook P.A., Munro N. (1982). Design of moden control systems. Peter Peregrinus Ltd, New York

    Google Scholar 

  22. Ibrahim R.A. (1985). Parametric random vibration. Wiley, New York

    MATH  Google Scholar 

  23. Wang Y., Feng Q., Wang Q.Y. (2004). Study on mathematical models of anti-shock isolation system of a marine engine. J Ship Mech 8(3):124–132

    Google Scholar 

  24. He, H.: The two-stage isolation system with limiters under shock excitation. Tong Ji University Dissertation (2005).

  25. Moon F.C. (1987). Chaotic vibrations. An introduction for applied scientists and engineers. Wiley, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, Q. Discrete Models of a Class of Isolation Systems. Arch Appl Mech 76, 277–294 (2006). https://doi.org/10.1007/s00419-006-0026-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-006-0026-8

Keywords

Navigation