Skip to main content
Log in

Dynamic Analysis of an Infinite Cylindrical Hole in a Saturated Poroelastic Medium

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this paper, the dynamic response of an infinite cylindrical hole embedded in a porous medium and subjected to an axisymmetric ring load is investigated. Two scalar potentials and two vector potentials are introduced to decouple the governing equations of Biot’s theory. By taking a Fourier transform with respect to time and the axial coordinate, we derive general solutions for the potentials, displacements, stresses and pore pressures in the frequency-wave-number domain. Using the general solutions and a set of boundary conditions applied at the hole surface, the frequency-wave-number domain solutions for the proposed problem are determined. Numerical inversion of the Fourier transform with respect to the axial wave number yields the frequency domain solutions, while a double inverse Fourier transform with respect to frequency as well as the axial wave number generates the time-space domain solution. The numerical results of this paper indicate that the dynamic response of a porous medium surrounding an infinite hole is dependant upon many factors including the parameters of the porous media, the location of receivers, the boundary conditions along the hole surface as well as the load characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tranter C.J. (1946). On the elastic distortion of a cylindrical hole by a localized hydrostatic pressure. Q Appl Math 4:298–302

    MATH  MathSciNet  Google Scholar 

  2. Bowie O.L. (1947). Elastic stresses due to a semi-infinite band of hydrostatic pressure acting over a cylindrical hole in an infinite solid. Q Appl Math 5:100–101

    MathSciNet  Google Scholar 

  3. Parnes R. (1983). Applied tractions on the surface of an infinite cylindrical bore. Int J Solids Structures 19:165–177

    Article  MATH  Google Scholar 

  4. Selberg W.L. (1952). Transient compression waves from spherical and cylindrical cavities. Ark Fys 5:97–108

    MATH  MathSciNet  Google Scholar 

  5. Jordan D.W. (1962). The stress wave from a finite cylindrical explosive source. J Math Mech 11:503–551

    MATH  MathSciNet  Google Scholar 

  6. Parnes R. (1969). Response of an infinite elastic medium to traveling loads in a cylindrical bore. ASME J Appl Mech 36:51–58

    MATH  Google Scholar 

  7. Parnes R. (1986). Steady-state ring-load pressure on a borehole surface. Int J Solids Struct 22:73–86

    Article  MATH  Google Scholar 

  8. Parnes R. (1983). Elastic response to a time-harmonic torsion-force acting on a bore surface. Int J Solids Struct 19:925–934

    Article  MATH  Google Scholar 

  9. Rajapakse R.K.N.D. (1993). Stress analysis of borehole in poroelastic medium. ASCE J Eng Mech 119:1205–1227

    Article  Google Scholar 

  10. Cui L., Cheng A.H.D., Abousleiman Y. (1997). Poroelastic solution for an inclined borehole. ASME J Appl Mech 64:32–38

    Article  MATH  Google Scholar 

  11. Biot M.A. (1956). Theory of propagation of elastic waves in a fluid-saturated porous solid, I, Low frenquency range. J Acoust Soc Am 28:168–178

    Article  MathSciNet  Google Scholar 

  12. Biot M.A. (1956). Theory of propagation of elastic waves in a fluid-saturated porous solid, II: Higher frenquency range. J Acoust Soc Am 28:179–191

    Article  MathSciNet  Google Scholar 

  13. Biot M.A. (1962). Mechanics of deformation and acoustic propagation in porous media. J Appl Phys 33:1482–1498

    Article  MATH  MathSciNet  Google Scholar 

  14. Biot M.A. (1941). General theory of three-dimensional consolidation. J Appl Phys 12:155–164

    Article  MATH  Google Scholar 

  15. Truesdell C., Noll W. (1965). The non-linear field theories of mechanics. In: Flügge S. (eds) Principles of classical mechanics and field theory, Handbuck der Physik, vol III/3. Springer, Berlin Heidelberg New York

    Google Scholar 

  16. Morland L.W. (1972). A simple constitutive theory for a fluid-saturated porous solid. J Geophys Res 77:890–900

    Google Scholar 

  17. Bowen R.M. (1980). Incompressible porous media models by use of the theory of mixtures. Int J Eng Sci 18:1129–1148

    Article  MATH  Google Scholar 

  18. Bowen R.M. (1982). Compressible porous media models by use of the theory of mixtures. Int J Eng Sci 20:697–735

    Article  MATH  Google Scholar 

  19. Passman, S.L., Nunziato, E.W., Walsh, E.K.: A theory of multiphase mixtures, Appendix. In: Truesdell, C.A. (ed.) Rational thermodynamics, Hopkins University Press, 2nd edn. pp. 286–325 (1984).

  20. de Boer R. (2000). Theory of porous media – highlights in the historical development and current state. Springer, Berlin Heidelberg New York

    Google Scholar 

  21. Ehlers W., Bluhm J. (2002). Porous media: theory, experiments, and numerical applications. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  22. O‘Connell R.J., Budiansky B. (1977). Viscoelastic properties of fluid-saturated cracked solids. J Geophys Res 82:5719–5735

    Article  Google Scholar 

  23. Christensen R.M. (1979). Mechanics of composite materials. Wiley, New York

    MATH  Google Scholar 

  24. Hudson J.A., Liu E., Crampin S. (1996). The mechanical properties of materials with interconnected cracks and pores. Geophys J Int 124:105–112

    Google Scholar 

  25. Jakobsen M., Johansen T.A., McCann C. (2003). The acoustic signature of fluid flow in complex porous media. J Appl Geophys 54:219–246

    Article  Google Scholar 

  26. Mura T. (1982). Micromechanics of defects in solids. Martinus-NijhoK, Derdrecht

    Google Scholar 

  27. Nemat-Nasser, S., Hori, M.: Micromechanics: overall properties of heterogeneous materials. 2nd edn. Amsterdam: North-Holland, Amsterdam (1999)

  28. Johnson D.L., Koplik J., Dashen R. (1987). Theory of dynamic permeability and tortuosity in fluid-saturated porous-media. J Fluid Mech 176:379–402

    Article  MATH  Google Scholar 

  29. Pride S.R., Morgan F.D., Gangi A.F. (1993). Drag forces of porous-medium acoustics. Phys Rev B 47:4964–4978

    Article  Google Scholar 

  30. Sneddon I.N. (1951). Fourier transforms. McGraw-Hill, New York

    MATH  Google Scholar 

  31. Oppenheim A.V., Schafer R.W. (1999). Discrete-time signal processing. Prentice-Hall Inc, Englewood Cliffs

    MATH  Google Scholar 

  32. Ricker N.H. (1977). Transient waves in visco-elastic media. Elsevier, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Fei Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, JF., Jeng, DS. Dynamic Analysis of an Infinite Cylindrical Hole in a Saturated Poroelastic Medium. Arch Appl Mech 76, 263–276 (2006). https://doi.org/10.1007/s00419-006-0025-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-006-0025-9

Keywords

Navigation