Skip to main content
Log in

A simple approach to electromagnetic actuator control based on asymptotically exact linearization

  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper deals with system identification and robust control of a nonlinear electromagnetic actuator and proposes a simple, robust, and easy-to-implement compensation law for linearization, known as asymptotically exact linearization. There are many practical applications where this type of electromagnetic actuator is used: electromagnetic valve actuators of combustion engines, artificial heart actuators, electromagnetic brakes, etc. The investigated system is open-loop unstable and nonlinear and has a restricted equilibrium region. System identification experiments are presented with an emphasis on the design procedure of an controller. The experimental results demonstrate that the controller design problem can be successfully handled within the framework of robust control. This paper reflects a rather pragmatic control approach and, although it does not introduce novel control strategies, might be valuable reading for practicing engineers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Janovský, L.: Elevator mechanical design, 3rd edn. Elevator World, Mobile, AL (1999)

  2. Hoffmann, W., Peterson, K., Stefanopoulou, A.: Iterative learning control for soft landing of electromechanical valve actuator in camless engines. IEEE Trans. Control Syst. Technol. 11(2), 174–184 (2003)

    Google Scholar 

  3. Lindlau, J.D., Knospe, C.R.: Feedback linearization of an active magnetic bearing with voltage control. IEEE Trans. Control Syst. Technol. 10(1), 21–31 (2002)

    Google Scholar 

  4. Li, L., Shinshi, T., Shimokohbe, A.: Asymptotically exact linearizations for active magnetic bearing actuators in voltage control configuration. IEEE Trans. Control Syst. Technol. 11(2), 185–195 (2003)

    Google Scholar 

  5. Duan, G-R., Howe, D.: Robust magnetic bearing control via eigenstructure assignment dynamical compensation. IEEE Trans. Control Syst. Technol. 11(2), 204–215 (2003)

    Google Scholar 

  6. Fittro, R.L., Knospe, C.R.: Rotor compliance minimization via μ-control of active magnetic bearings. IEEE Trans. Control Syst. Technol. 10(2), 238–250 (2002)

    Google Scholar 

  7. Khamesee, M.B., Kato, N., Nomura, Y., Nakamura, T.: Design and control of a microrobotic system using magnetic levitation. IEEE/ASME Trans. Mechatron. 7(1), 1–14 (2002)

    Google Scholar 

  8. Woo-Sup Han, Chong-Won Lee, Okada, Y.: Design and control of a disk-type integrated motor-bearing system. IEEE/ASME Trans. Mechatron. 7(1), 15–22 (2002)

    Google Scholar 

  9. Vischer, D., Bleuler, H.: Self-sensing active magnetic levitation. IEEE Trans. Magnet. 29(2), 1276–1281 (1993)

    Google Scholar 

  10. Bleuler, H., Gahler, C., Herzog, R., Larsonneur, R., Mizuno, T., Siegwart, R., Woo Shao-Ju.: Application of digital signal processors for industrial magnetic bearings. IEEE Trans. Control Syst. Technol. 2(2), 280–289 (1994)

  11. * * *: Transrapid: On Track for Global Success, press release, 24 May 2004. www.transrapid.de.

  12. Viorel, I.A., Forrai, A., Ciorba, R.C., Hedesiu, H.C.: Switched reluctance motor performance prediction. IEEE Electric Machines Drives Conference (1997) TB1/4.1–TB1/4.3

  13. Trifa, V., Marschalko, R., Szekely, A., Szasz, Cs., Galatus, R.: Investigation of a four phase switched reluctance motor supplied from a PWM inverter optimization of electrical and electronic equipments. In: Proceedings of the 6th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM ‘98), 2, 341–344 (1998)

  14. Bittar, A., Sales, R.M.: control for MagLev vehicles. IEEE Control Syst. 18(4), 18–25 (1998)

    Google Scholar 

  15. Hamar, J., Nagy, I., Denes, I., Buti, B., Masada, E.: Small-signal analysis of a dual channel resonant DC-DC buck converter. In: Proceedings of the Power Conversion Conference (PCC Osaka), 2, 721–726 (2002)

  16. Ando, N., Szemes, P.T., Korondi, P., Hashimoto, H.: Friction compensation for 6DOF Cartesian coordinate haptic interface. In: Intelligent Robots and System, IEEE/RSJ International Conference, 3, 2893–2898 (2002)

  17. Khalil, H.K.: Nonlinear systems, 3rd edn. Prentice-Hall, Englewood Cliffs, NJ (2002)

  18. Özbay, H.: Feedback control theory. CRC, West Palm Beach (1999)

  19. Fujimoto, K., Sugie, T.: Freedom in coordinate transformation for exact linearization and its application to transient behavior improvement. Automatica 37, 137–144 (2001)

    Google Scholar 

  20. Schaft, A. van der.: L2-Gain and Passivity Techniques in Nonlinear Control. Springer, Berlin Heidelberg New York (2000)

  21. Ljung, L.: System identification – theory for the user. Prentice-Hall, New York (1987)

  22. Haber, R., Keviczky, L.: Identification of ‘linear’ systems having signal-dependent parameters. Int. J. Syst. Sci. 16(7), 869–884 (1985)

    Google Scholar 

  23. Welsh, J.S., Goodwin, G.C.: Finite sample properties of indirect nonparametric closed-loop identification. IEEE Trans. Automat. Control 47(8), 1277–1293 (2002)

    Google Scholar 

  24. Adachi, S.: System identification – theory for the users (in Japanese). The Society of Instrument and Control Engineers – Japan (1993)

  25. Forrai, A., Hashimoto, S., Funato, H., Kamiyama, K.: Robust controller design with hard constraint on the control signal - application for active vibration suppression of flexible structure. Arch. Appl. Mech. 72(6–7), 379–394 (2002)

    Google Scholar 

  26. Stein, G.: Respect the unstable. IEEE Control Syst. Mag. 23(4), 12–25 (2003)

    Google Scholar 

  27. Doyle, J.C., Francis, B.A, Tannenbaum; A.R.: Feedback control theory. Mcmillan, New York, 1992

  28. Chiang, R.Y., Safonov, M.G.: Robust control toolbox: user’s guide. The MathWorks, Natick, MA (1992)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Forrai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forrai, A., Ueda, T. & Yumura, T. A simple approach to electromagnetic actuator control based on asymptotically exact linearization. Archive of Applied Mechanics 74, 550–562 (2005). https://doi.org/10.1007/s00419-005-0371-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-005-0371-z

Keywords

Navigation