Abstract
The glia limitans superficialis (GLS) on the rodent cortical surface consists of astrocyte bodies intermingled with their cytoplasmic processes. Many studies have observed astrocyte reactivity in the medial prefrontal cortex (mPFC) parenchyma induced by a peripheral nerve injury, while the response of GLS astrocytes is still not fully understood. The aim of our study was to identify the reactivity of rat GLS astrocytes in response to sciatic nerve compression (SNC) over different time periods. The alteration of GLS astrocyte reactivity was monitored using immunofluorescence (IF) intensities of glial fibrillary acidic protein (GFAP), glutamine synthetase (GS), and NFκBp65. Our results demonstrated that SNC induced GLS astrocyte reactivity seen as increased intensities of GFAP-IF, and longer extensions of cytoplasmic processes into lamina I. First significant increase of GFAP-IF was observed on post-operation day 7 (POD7) after SNC with further increases on POD14 and POD21. In contrast, dynamic alteration of the extension of cytoplasmic processes into lamina I was detected as early as POD1 and continued throughout the monitored survival periods of both sham and SNC operations. The reactivity of GLS astrocytes was not associated with their proliferation. In addition, GLS astrocytes also displayed a significant decrease in GS immunofluorescence (GS-IF) and NFκB immunofluorescence (NFκB-IF) in response to sham and SNC operation compared with naïve control rats. These results suggest that damaged peripheral tissues (following sham operation as well as peripheral nerve lesions) may induce significant changes in GLS astrocyte reactivity. The signaling mechanism from injured peripheral tissue and nerve remains to be elucidated.
This is a preview of subscription content, access via your institution.






References
Abbott NJ, Pizzo ME, Preston JE et al (2018) The role of brain barriers in fluid movement in the CNS: is there a ‘glymphatic’ system? Acta Neuropathol 135:387–407. https://doi.org/10.1007/s00401-018-1812-4
Aldskogius H, Kozlova EN (1998) Central neuron–glial and glial–glial interactions following axon injury. Prog Neurobiol 55:1–26. https://doi.org/10.1016/S0301-0082(97)00093-2
Almeida TF, Roizenblatt S, Tufik S (2004) Afferent pain pathways: a neuroanatomical review. Brain Res 1000:40–56. https://doi.org/10.1016/j.brainres.2003.10.073
Anastasiades PG, Carter AG (2021) Circuit organization of the rodent medial prefrontal cortex. Trends Neurosci 44:550–563. https://doi.org/10.1016/j.tins.2021.03.006
Anlauf E, Derouiche A (2013) Glutamine synthetase as an astrocytic marker: its cell type and vesicle localization. Front Endocrinol 4:144. https://doi.org/10.3389/fendo.2013.00144
Blom SM, Pfister J-P, Santello M et al (2014) Nerve injury-induced neuropathic pain causes disinhibition of the anterior cingulate cortex. J Neurosci 34:5754–5764. https://doi.org/10.1523/JNEUROSCI.3667-13.2014
Brøchner CB, Holst CB, Møllgård K (2015) Outer brain barriers in rat and human development. Front Neurosci 9:75. https://doi.org/10.3389/fnins.2015.00075
Chaboub LS, Deneen B (2012) Developmental origins of astrocyte heterogeneity: the final frontier of CNS development. Dev Neurosci 34:379–388. https://doi.org/10.1159/000343723
Chaudhry F, Lehre K, Campagne M et al (1995) Glutamate transporters in glial plasma-membranes—highly differentiated localizations revealed by quantitative ultrastructural immunocytochemistry. Neuron 15:711–720. https://doi.org/10.1016/0896-6273(95)90158-2
Chen L-F, Greene WC (2004) Shaping the nuclear action of NF-κB. Nat Rev Mol Cell Biol 5:392–401. https://doi.org/10.1038/nrm1368
Chen F-L, Dong Y-L, Zhang Z-J et al (2012) Activation of astrocytes in the anterior cingulate cortex contributes to the affective component of pain in an inflammatory pain model. Brain Res Bull 87:60–66. https://doi.org/10.1016/j.brainresbull.2011.09.022
Cho J, Huh Y (2020) Astrocytic calcium dynamics along the pain pathway. Front Cell Neurosci 14:594216. https://doi.org/10.3389/fncel.2020.594216
Chowdhury GMI, Patel AB, Mason GF et al (2007) Glutamatergic and GABAergic neurotransmitter cycling and energy metabolism in rat cerebral cortex during postnatal development. J Cereb Blood Flow Metab 27:1895–1907. https://doi.org/10.1038/sj.jcbfm.9600490
Chu Sin Chung P, Panigada T, Cardis R et al (2017) Peripheral nerve injury induces a transitory microglial reaction in the rat infralimbic cortex. Neurosci Lett 655:14–20. https://doi.org/10.1016/j.neulet.2017.06.037
Colombo E, Farina C (2016) Astrocytes: key regulators of neuroinflammation. Trends Immunol 37:608–620. https://doi.org/10.1016/j.it.2016.06.006
Coulter DA, Steinhauser C (2015) Role of astrocytes in epilepsy. CSH Perspect Med 5:a022434–a022434. https://doi.org/10.1101/cshperspect.a022434
Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105. https://doi.org/10.1016/S0301-0082(00)00067-8
Dellarole A, Morton P, Brambilla R et al (2014) Neuropathic pain-induced depressive-like behavior and hippocampal neurogenesis and plasticity are dependent on TNFR1 signaling. Brain Behav Immun 41:65–81. https://doi.org/10.1016/j.bbi.2014.04.003
Dubový P (2002) Computer-assisted quantitative analysis of immunofluorescence staining of the extracellular matrix in rat dorsal and ventral spinal roots. Acta Histochem 104:371–374. https://doi.org/10.1078/0065-1281-00664
Eid T, Tu N, Lee T-SW, Lai JCK (2013) Regulation of astrocyte glutamine synthetase in epilepsy. Neurochem Int 63:670–681. https://doi.org/10.1016/j.neuint.2013.06.008
Emsley JG, Macklis JD (2006) Astroglial heterogeneity closely reflects the neuronal-defined anatomy of the adult murine CNS. Neuron Glia Biol 2:175–186. https://doi.org/10.1017/S1740925X06000202
Engelhardt B, Coisne C (2011) Fluids and barriers of the CNS establish immune privilege by confining immune surveillance to a two-walled castle moat surrounding the CNS castle. Fluids Barriers CNS 8:1–9. https://doi.org/10.1186/2045-8118-8-4
Escartin C, Galea E, Lakatos A et al (2021) Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci 24:312–325. https://doi.org/10.1038/s41593-020-00783-4
Eto K, Kim SK, Takeda I, Nabekura J (2018) The roles of cortical astrocytes in chronic pain and other brain pathologies. Neurosci Res 126:3–8. https://doi.org/10.1016/j.neures.2017.08.009
Falcone C, Wolf-Ochoa M, Amina S et al (2019) Cortical interlaminar astrocytes across the therian mammal radiation. J Comp Neur 527:1654–1674. https://doi.org/10.1002/cne.24605
Falcone C, Penna E, Hong T et al (2021) Cortical interlaminar astrocytes are generated prenatally, mature postnatally, and express unique markers in human and nonhuman primates. Cereb Cortex 31:379–395. https://doi.org/10.1093/cercor/bhaa231
Farina C, Aloisi F, Meinl E (2007) Astrocytes are active players in cerebral innate immunity. Trends Immun 28:138–145. https://doi.org/10.1016/j.it.2007.01.005
Feig SL, Haberly LB (2011) Surface-associated astrocytes, not endfeet, form the glia limitans in posterior piriform cortex and have a spatially distributed, not a domain, organization. J Comp Neur 519:1952–1969. https://doi.org/10.1002/cne.22615
Fiore NT, Austin PJ (2019) Peripheral nerve injury triggers neuroinflammation in the medial prefrontal cortex and ventral hippocampus in a subgroup of rats with coincident affective behavioural changes. Neuroscience 416:147–167. https://doi.org/10.1016/j.neuroscience.2019.08.005
Ghosh G, Wang VY-F, Huang D-B, Fusco A (2012) NF-κB regulation: lessons from structures. Immunol Rev 246:36–58. https://doi.org/10.1111/j.1600-065X.2012.01097.x
Guida F, Luongo L, Marmo F et al (2015) Palmitoylethanolamide reduces pain-related behaviors and restores glutamatergic synapses homeostasis in the medial prefrontal cortex of neuropathic mice. Mol Brain 8:47. https://doi.org/10.1186/s13041-015-0139-5
Hansson E, Muyderman H, Leonova J et al (2000) Astroglia and glutamate in physiology and pathology: aspects on glutamate transport, glutamate-induced cell swelling and gap-junction communication. Neurochem Int 37:317–329. https://doi.org/10.1016/S0197-0186(00)00033-4
Hayden MS, Ghosh S (2008) Shared principles in NF-kappaB signaling. Cell 132:344–362. https://doi.org/10.1016/j.cell.2008.01.020
Hung K-L, Wang S-J, Wang Y-C et al (2014) Upregulation of presynaptic proteins and protein kinases associated with enhanced glutamate release from axonal terminals (synaptosomes) of the medial prefrontal cortex in rats with neuropathic pain. Pain 155:377–387. https://doi.org/10.1016/j.pain.2013.10.026
Joukal M, Klusáková I, Solár P et al (2016) Cellular reactions of the choroid plexus induced by peripheral nerve injury. Neurosci Lett 628:73–77. https://doi.org/10.1016/j.neulet.2016.06.019
Lattke M, Reichel SN, Magnutzki A et al (2017) Transient IKK2 activation in astrocytes initiates selective non-cell-autonomous neurodegeneration. Mol Neurodegener 12:16. https://doi.org/10.1186/s13024-017-0157-0
Lim TKY, Shi XQ, Martin HC et al (2014) Blood–nerve barrier dysfunction contributes to the generation of neuropathic pain and allows targeting of injured nerves for pain relief. Pain 155:954–967. https://doi.org/10.1016/j.pain.2014.01.026
Liu X, Zhang Z, Guo W et al (2013) The superficial glia limitans of mouse and monkey brain and spinal cord: glia limitans of brain and spinal cord. Anat Rec 296:995–1007. https://doi.org/10.1002/ar.22717
Mahmoud S, Gharagozloo M, Simard C, Gris D (2019) Astrocytes maintain glutamate homeostasis in the CNS by controlling the balance between glutamate uptake and release. Cells 8:184. https://doi.org/10.3390/cells8020184
Mémet S (2006) NF-κB functions in the nervous system: from development to disease. Biochem Pharmacol 72:1180–1195. https://doi.org/10.1016/j.bcp.2006.09.003
Miguel-Hidalgo JJ, Waltzer R, Whittom AA et al (2010) Glial and glutamatergic markers in depression, alcoholism, and their comorbidity. J Affect Disord 127:230–240. https://doi.org/10.1016/j.jad.2010.06.003
Miller SJ (2018) Astrocyte heterogeneity in the adult central nervous system. Front Cell Neurosci 12:401. https://doi.org/10.3389/fncel.2018.00401
Morel L, Chiang MSR, Higashimori H et al (2017) Molecular and functional properties of regional astrocytes in the adult brain. J Neurosci 37:8706–8717. https://doi.org/10.1523/JNEUROSCI.3956-16.2017
Morel L, Men Y, Chiang MSR et al (2019) Intracortical astrocyte subpopulations defined by astrocyte reporter mice in the adult brain. Glia 67:171–181. https://doi.org/10.1002/glia.23545
Narita M, Kuzumaki N, Narita M et al (2006) Chronic pain-induced emotional dysfunction is associated with astrogliosis due to cortical δ-opioid receptor dysfunction. J Neurochem 97:1369–1378. https://doi.org/10.1111/j.1471-4159.2006.03824.x
Norenberg MD (1979) Distribution of glutamine synthetase in the rat central nervous system. J Histochem Cytochem 27:756–762. https://doi.org/10.1177/27.3.39099
Ortinski PI, Dong J, Mungenast A et al (2010) Selective induction of astrocytic gliosis generates deficits in neuronal inhibition. Nat Neurosci 13:584–591. https://doi.org/10.1038/nn.2535
Papageorgiou IE, Gabriel S, Fetani AF et al (2011) Redistribution of astrocytic glutamine synthetase in the hippocampus of chronic epileptic rats. Glia 59:1706–1718. https://doi.org/10.1002/glia.21217
Pasti L, Zonta M, Pozzan T et al (2001) Cytosolic calcium oscillations in astrocytes may regulate exocytotic release of glutamate. J Neurosci 21:477–484. https://doi.org/10.1523/JNEUROSCI.21-02-00477.2001
Paxinos G, Watson C (1997) The rat brain in stereotaxic coordinates. Elsevier Academic Press, San Diego
Pekny M, Pekna M (2004) Astrocyte intermediate filaments in CNS pathologies and regeneration. J Pathol 204:428–437. https://doi.org/10.1002/path.1645
Peters A, Palay S, Webster H (1991) The fine structure of the nervous system: neurons and their supporting cells. Oxford University Press, New York
Pradère J-P, Hernandez C, Koppe C et al (2016) Negative regulation of NF-κB p65 activity by serine 536 phosphorylation. Sci Signal. https://doi.org/10.1126/scisignal.aab2820
Rakic P (2003) Elusive radial glial cells: historical and evolutionary perspective. Glia 43:19–32. https://doi.org/10.1002/glia.10244
Sang K, Bao C, Xin Y et al (2018) Plastic change of prefrontal cortex mediates anxiety-like behaviors associated with chronic pain in neuropathic rats. Mol Pain 14:1744806918783931. https://doi.org/10.1177/1744806918783931
Schiweck J, Eickholt BJ, Murk K (2018) Important shapeshifter: mechanisms allowing astrocytes to respond to the changing nervous system during development, injury and disease. Front Cell Neurosci 12:261. https://doi.org/10.3389/fncel.2018.00261
Seltzer Z, Dubner R, Shir Y (1990) A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain 43:205–218. https://doi.org/10.1016/0304-3959(90)91074-S
Semyanov A, Verkhratsky A (2021) Astrocytic processes: from tripartite synapses to the active milieu. Trends Neurosci 44:781–792. https://doi.org/10.1016/j.tins.2021.07.006
Shlosberg D, Patrick SL, Buskila Y, Amitai Y (2003) Inhibitory effect of mouse neocortex layer I on the underlying cellular network. Eur J Neurosci 18:2751–2759. https://doi.org/10.1111/j.1460-9568.2003.03016.x
Svíženská IH, Brázda V, Klusáková I, Dubový P (2013) Bilateral changes of cannabinoid receptor type 2 protein and mRNA in the dorsal root ganglia of a rat neuropathic pain model. J Histochem Cytochem 61:529–547. https://doi.org/10.1369/0022155413491269
Tang J, Bair M, Descalzi G (2021) Reactive astrocytes: critical players in the development of chronic pain. Front Psychiatry 12:682056. https://doi.org/10.3389/fpsyt.2021.682056
van der Hel WS, Notenboom RGE, Bos IWM et al (2005) Reduced glutamine synthetase in hippocampal areas with neuron loss in temporal lobe epilepsy. Neurology 64:326–333. https://doi.org/10.1212/01.WNL.0000149636.44660.99
Verkhratsky A, Nedergaard M (2018) Physiology of astroglia. Physiol Rev 98:239–389. https://doi.org/10.1152/physrev.00042.2016
Villarreal A, Vidos C, Monteverde Busso M et al (2021) Pathological neuroinflammatory conversion of reactive astrocytes is induced by microglia and involves chromatin remodeling. Front Pharmacol 12:689346. https://doi.org/10.3389/fphar.2021.689346
Wei F, Guo W, Zou S et al (2008) Supraspinal glial–neuronal interactions contribute to descending pain facilitation. J Neurosci 28:10482–10495. https://doi.org/10.1523/JNEUROSCI.3593-08.2008
Yamashita A, Hamada A, Suhara Y et al (2014) Astrocytic activation in the anterior cingulate cortex is critical for sleep disorder under neuropathic pain. Synapse 68:235–247. https://doi.org/10.1002/syn.21733
Yoon H, Walters G, Paulsen AR, Scarisbrick IA (2017) Astrocyte heterogeneity across the brain and spinal cord occurs developmentally, in adulthood and in response to demyelination. PLoS ONE 12:e0180697. https://doi.org/10.1371/journal.pone.0180697
Zamboni L, Demartin.c, (1967) Buffered picric acid-formaldehyde—a new rapid fixative for electron microscopy. J Cell Biol 35:148A
Zhang Y, Reichel JM, Han C et al (2017) Astrocytic process plasticity and IKKβ/NF-κB in central control of blood glucose, blood pressure, and body weight. Cell Metab 25:1091–1102. https://doi.org/10.1016/j.cmet.2017.04.002
Zhuo M (2016) Neural mechanisms underlying anxiety–chronic pain interactions. Trends Neurosci 39:136–145. https://doi.org/10.1016/j.tins.2016.01.006
Acknowledgements
We thank Ms. Bc. Jitka Mikulášková, Mgr. Jana Vachová, and Mr. Lumír Trenčanský for their skillful technical assistance.
Funding
This work was supported by MUNI/A/1331/2021.
Author information
Authors and Affiliations
Contributions
All authors listed above have contributed sufficiently to be included as authors. K.B. and P.D. conceived the experiments, contributed to the analysis and/or interpretation of data, the critical discussion of the results, and the elaboration of the manuscript, and obtained funding for the study. V.S. directly participated in the execution of immunohistochemical assays and elaboration of the manuscript. All the authors have revised the work critically for important intellectual content, approved the final version to be published, and agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Conflict of interest
The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
Ethical approval
All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.
Data availability statement
The original contributions presented in the study are included in the article/supplementary material; further inquiries can be directed to the corresponding author.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Bretová, K., Svobodová, V. & Dubový, P. Astrocyte reactivity in the glia limitans superficialis of the rat medial prefrontal cortex following sciatic nerve injury. Histochem Cell Biol 159, 185–198 (2023). https://doi.org/10.1007/s00418-022-02161-6
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00418-022-02161-6