Skip to main content
Log in

Albumin-based nanoparticles as contrast medium for MRI: vascular imaging, tissue and cell interactions, and pharmacokinetics of second-generation nanoparticles

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

This multidisciplinary study examined the pharmacokinetics of nanoparticles based on albumin-DTPA-gadolinium chelates, testing the hypothesis that these nanoparticles create a stronger vessel signal than conventional gadolinium-based contrast agents and exploring if they are safe for clinical use. Nanoparticles based on human serum albumin, bearing gadolinium and designed for use in magnetic resonance imaging, were used to generate magnet resonance images (MRI) of the vascular system in rats (“blood pool imaging”). At the low nanoparticle doses used for radionuclide imaging, nanoparticle-associated metals were cleared from the blood into the liver during the first 4 h after nanoparticle application. At the higher doses required for MRI, the liver became saturated and kidney and spleen acted as additional sinks for the metals, and accounted for most processing of the nanoparticles. The multiple components of the nanoparticles were cleared independently of one another. Albumin was detected in liver, spleen, and kidneys for up to 2 days after intravenous injection. Gadolinium was retained in the liver, kidneys, and spleen in significant concentrations for much longer. Gadolinium was present as significant fractions of initial dose for longer than 2 weeks after application, and gadolinium clearance was only complete after 6 weeks. Our analysis could not account quantitatively for the full dose of gadolinium that was applied, but numerous organs were found to contain gadolinium in the collagen of their connective tissues. Multiple lines of evidence indicated intracellular processing opening the DTPA chelates and leading to gadolinium long-term storage, in particular inside lysosomes. Turnover of the stored gadolinium was found to occur in soluble form in the kidneys, the liver, and the colon for up to 3 weeks after application. Gadolinium overload poses a significant hazard due to the high toxicity of free gadolinium ions. We discuss the relevance of our findings to gadolinium-deposition diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

%ID:

Percent of initial dose

%IDGd :

Percent of initial dose of gadolinium

AAS:

Atomic absorption spectroscopy

BSA:

Bovine serum albumin

BW:

Body weight

DTPA:

Diethylenetriaminepentaacetic acid

EC:

Endothelial cell(s)

EMA:

European Medicines Agency

FDA:

US Food and Drug Administration

Gd:

Gadolinium

HEPES:

(4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid)

HSA:

Human serum albumin

ICP-MS:

Inductively coupled plasma mass spectrometry

ITLC:

Instant thin layer chromatography

ITLC-SG:

Instant thin layer chromatography (ITLC) on silica gel strips

LRO:

Lysosome-related organelle

MPh:

Macrophage(s)

MR, MR(I):

Magnetic resonance (imaging)

NFD:

Nephrogenic fibrosing dermopathy

NSF:

Nephrogenic systemic fibrosis

OSEM:

Ordered subset expectation maximization

PBS:

Phosphate-buffered saline

p.i.:

Post injectionem

PET:

Positron emission tomography

PLA:

Polylactic acid

Rf:

Retention factor

RCP:

Radiochemical purity

RCY:

Radiochemical yield

SPECT:

Single-photon emission computed tomography

TEM:

Transmission electron microscopy

TGN:

Trans-Golgi network

References

  • Abdelmoez AA, Thurner GC, Wallnöfer EA, Klammsteiner N, Kremser C, Talasz H, Mrakovcic M, Fröhlich E, Jaschke W, Debbage P (2010) Albumin-based nanoparticles as magnetic resonance contrast agents: II. Physicochemical characterisation of purified and standardised nanoparticles. Histochem Cell Biol 134:171–196

    CAS  PubMed  Google Scholar 

  • Acar T, Kaya E, Yoruk MD, Duzenli N, Senturk RS, Can C, Ozturk L, Tomruk C, Uyanikgil Y, Rybicki FJ (2019) Changes in tissue gadolinium biodistribution measured in an animal model exposed to four chelating agents. Jpn J Radiol 37:458–465

    PubMed  Google Scholar 

  • Acton SL, Scherer PE, Lodish HF, Krieger M (1994) Expression cloning of SR-BI, a CD36-related class B scavenger receptor. J Biol Chem 269:21003–21009

    CAS  PubMed  Google Scholar 

  • Adachi H, Tsujimoto M, Arai H, Inoue K (1997) Expression cloning of a novel scavenger receptor from human endothelial cells. J Biol Chem 272:31217–31220

    CAS  PubMed  Google Scholar 

  • Adachi K, Oiwa K, Nishizaka T, Furuike S, Noji H, Itoh H, Yoshida M, Kinosita K (2007) Coupling of rotation and catalysis in F1-ATPase revealed by single-molecule imaging and manipulation. Cell 130:309–321

    CAS  PubMed  Google Scholar 

  • Adding LC, Bannenberg GL, Gustafsson LE (2001) Basic experimental studies and clinical aspects of gadolinium salts and chelates. Cardiovasc Drug Rev 19:41–56

    CAS  PubMed  Google Scholar 

  • Ader M, Bergman RN (1994) Importance of transcapillary insulin transport to dynamics of insulin action after intravenous glucose. Am J Physiol 266:E17–E25

    CAS  PubMed  Google Scholar 

  • Al-Awqati Q (1985) Proton-translating ATPases. Annu Rev Cell Biol 2:179–200

    Google Scholar 

  • Albaaj F, Hutchinson AJ (2003) Hyperphosphataemia in renal failure: causes, consequences and current management. Drugs 63:577–596

    PubMed  Google Scholar 

  • Alemán CL, Más RM, Rodeiro I, Noa M, Hernández C, Menéndez R, Gámez R (1998) Reference database of the main physiological parameters in Sprague-Dawley rats from 6 to 32 months. Lab Anim 32:457–466

    PubMed  Google Scholar 

  • Anderson RGW, Orci L (1988) A view of acidic intracellular compartments. J Cell Biol 106:539–543

    CAS  PubMed  Google Scholar 

  • Andrew P, Deng Y, Kaufman S (2000) Fluid extravasation from spleen reduces blood volume in endotoxemia. Am J Physiol Regul Integr Comp Physiol 278:R60–R65

    CAS  PubMed  Google Scholar 

  • Aronson NN, Barrett AJ (1978) The specificity of cathepsin B. Hydrolysis of glucagon at the c-terminus by a peptidyldipeptidase mechanism. Biochem J 171:759–765

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baranyai Z, Pálinkás Z, Uggeri F, Maiocchi A, Aime S, Brücher E (2012) Dissociation kinetics of open-chain and macrocyclic gadolinium(III)-aminopolycarboxylate complexes related to magnetic resonance imaging: catalytic effect of endogenous ligands. Chem Eur J 18:16426–16435

    CAS  PubMed  Google Scholar 

  • Barnhardt JL, Kuhnert N, Bakan DA, Berk RN (1987) Biodistribution of GdCl3 and Gd–DTPA and their influence on proton magnetic relaxation in rats tissues. Magn Reson Imaging 5:221–231

    Google Scholar 

  • Barrett AJ, Kirschke H (1981) Cathepsin B, cathepsin H, and cathepsin L. Methods Enzymol 80:535–561

    CAS  PubMed  Google Scholar 

  • Bénazeth S, Purans J, Chalbot MC, Nguyen-Van-Duong MK, Nicolas L, Keller F, Gaudemer A (1998) Temperature and pH dependence XAFS study of Gd(DOTA)- and Gd(DTPA)2- complexes: solid state and solution structures. Inorg Chem 37:3667–3674

    PubMed  Google Scholar 

  • Bendayan M, Rasio EA (1996) Transport of insulin and albumin by the microvascular endothelium of the rete mirabile. J Cell Sci 109:1857–1864

    CAS  PubMed  Google Scholar 

  • Bennett TD, Rothe CF (1981) Hepatic capacitance responses to changes in flow and hepatic venous pressure in dogs. Am J Physiol 240:H18–H28

    CAS  PubMed  Google Scholar 

  • Besteiro S, Tonn D, Tetley L, Coombs GH, Mottram JC (2008) The AP3 adaptor is involved in the transport of membrane proteins to acidocalcisomes of Leishmania. J Cell Sci 121:561–570

    CAS  PubMed  Google Scholar 

  • Bianchi A, Calabi L, Corana F, Fontana S, Losi P, Maiocchi A, Paleari L, Valtancoli B (2000) Thermodynamic and structural properties of Gd(III) complexes with polyamino-polycarboxylic ligands: basic compounds for the development of MRI contrast agents. Coord Chem Rev 204:309–393

    CAS  Google Scholar 

  • Bito R, Hino S, Baba A, Tanaka M, Watabe H, Kawabata H (2005) Degradation of oxidative stress-induced denatured albumin in rat liver endothelial cells. Am J Physiol Cell Physiol 289:C531–C542

    CAS  PubMed  Google Scholar 

  • Blaufox MD (1989) Evaluation of renal function and disease with radionuclides: the upper urinary tract. Karger, Basel, pp 84–97

    Google Scholar 

  • Blomhoff R, Eskild W, Berg T (1984a) Endocytosis of formaldehyde-treated serum albumin via scavenger pathway in liver endothelial cells. Biochem J 218:81–86

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blomhoff R, Holte K, Naess LA, Berg T (1984b) Newly administered [3H] retinol is transferred from hepatocytes to stellate cells in liver storage. Exp Cell Res 150:186–193

    CAS  PubMed  Google Scholar 

  • Bower DV, Richter JK, von Tengg-Kobligk H, Heverhagen JT, Runge VM (2019) Gadolinium-based MRI contrast agents induce mitochondrial toxicity and cell death in human neurons, and toxicity increases with reduced kinetic atability of the Agent. Invest Radiol 54:453–463

    CAS  PubMed  Google Scholar 

  • Boyd AS, Zic JA, Abraham JL (2007) Gadolinium deposition in nephrogenic fibrosing dermopathy. J Am Acad Dermatol 56:27–30

    PubMed  Google Scholar 

  • Brightwell R, Tappel AL (1968) Subcellular distributions and properties of rat liver phosphodiesterases. Arch Biochem Biophys 124:325–332

    CAS  PubMed  Google Scholar 

  • Broome DR (2008) Nephrogenic systemic fibrosis associated with gadolinium based contrast agents: a summary of the medical literature reporting. Eur J Radiol 66:230–234

    PubMed  Google Scholar 

  • Broome DR, Cottrell AC, Kanal E (2007) Response to “Will dialysis prevent the development of nephrogenic systemic fibrosis after gadolinium-based contrast administration?”. Am J Roentgenol 189:W234–W235

    Google Scholar 

  • Brown MS, Ho YK, Goldstein JL (1980) The cholesteryl ester cycle in macrophage foam cells. Continual hydrolysis and re-esterification of cytoplasmic cholesteryl esters. J Biol Chem 55:9344–9352

    Google Scholar 

  • Brown MS, Anderson RGW, Goldstein JL (1983) Recycling receptors: the round trip itinerary of migrant membrane proteins. Cell 32:663–667

    CAS  PubMed  Google Scholar 

  • Brücher E (2002) Kinetic stabilities of Gd(III) chelates used as MRI contrast agents. Top Curr Chem 221:103–122

    Google Scholar 

  • Burai L, Hietapelto V, Királyéva R, Tóth E, Brücher E (1997) Stability constants and 1H relaxation effects of ternary complexes formed between Gd–DTPA, Gd–DTPA-BMA, Gd-DOTA, and Gd-EDTA and citrate, phosphate, and carbonate ions. Magn Reson Med 38:146–150

    CAS  PubMed  Google Scholar 

  • Bussi S, Coppo A, Botteron C, Fraimbault V, Fanizzi A, de Laurentiis E, Colombo Serra S, Kirchin MA, Tedoldi F, Maisano F (2018) Differences in gadolinium retention after repeated injections of macrocyclic MR contrast agents to rats. J Magn Reson Imaging 47:746–752

    PubMed  Google Scholar 

  • Cacheris WP, Quay SC, Rocklage SM (1990) The relationship between thermodynamics and the toxicity of gadolinium complexes. Magn Reson Imaging 8:467–481

    CAS  PubMed  Google Scholar 

  • Caille JM, Lemanceau B, Bonnemain B (1983) Gadolinium as a contrast agent for NMR. Am J Neuroradiol 4:1041–1042

    CAS  PubMed  Google Scholar 

  • Caldwell RA, Clemo HF, Baumgarten CM (1998) Using gadolinium to identify stretch-activated channels: technical considerations. Am J Physiol 275:C619–621

    CAS  PubMed  Google Scholar 

  • Caravan P, Ellison JJ, McMurry TJ, Lauffer RB (1999) Gadolinium(III) chelates as MRI contrast agents: structure, dynamics and applications. Chem Rev 99:2293–2352

    CAS  PubMed  Google Scholar 

  • Cessac-Guillemet AL, Mounier F, Borot C, Bakala H, Perichon M, Schaeverbeke M, Schaeverbeke J (1996) Characterization and distribution of albumin binding protein in normal rat kidney. Am J Physiol Renal Physiol 271:F101–F107

    CAS  Google Scholar 

  • Chang CA, Brittain HG, Telser J, Tweedle MF (1990) pH dependence of relaxivities and hydration numbers of gadolinium(III) complexes of linear amino carboxylates. Inorg Chem 29:4468–4473

    CAS  Google Scholar 

  • Cohan RH, Leder RA, Herzberg AJ, Hedlund LW, Wheeler CT, Beam CA, Nadel SN, Dunnick NR (1991) Extravascular toxicity of two magnetic resonance contrast agents: preliminary experience in the rat. Invest Radiol 26:224–226

    CAS  PubMed  Google Scholar 

  • Colletti PM (2008) Nephrogenic systemic fibrosis and gadolinium: a perfect storm. Am J Roentgenol 191:1150–1153

    Google Scholar 

  • Cowper SE (2005) Nephrogenic systemic fibrosis: the nosological and conceptual evolution of nephrogenic fibrosing dermopathy. Am J Kidney Dis 46:763–765

    PubMed  Google Scholar 

  • Cowper SE, Robin HS, Steinberg SM, Su LD, Gupta S, LeBoit PE (2000) Scleromyxoedema-like cutaneous diseases in renal-dialysis patients. Lancet 356:1000–1001

    CAS  PubMed  Google Scholar 

  • Cowper SE, Su LD, Bhawan J, Robin HS, LeBoit PE (2001) Nephrogenic fibrosing dermopathy. Am J Dermatopathol 23:383–393

    CAS  PubMed  Google Scholar 

  • Cramer CL, Davis RH (1984) Polyphosphate-cation interaction in the amino acid-containing vacuole of Neurospora crassa. J Biol Chem 259:5152–5157

    CAS  PubMed  Google Scholar 

  • Cutler DF (2002) Introduction: lysosome-related organelles. Semin Cell Dev Biol 13:261–262

    CAS  PubMed  Google Scholar 

  • D’Souza MP, Ambudkar SV, August JT, Maloney PC (1987) Reconstitution of the lysosomal proton pump. Proc Natl Acad Sci USA 84:6980–6984

    PubMed  Google Scholar 

  • Daram SR, Cortese CM, Bastani B (2005) Nephrogenic fibrosing dermopathy/nephrogenic systemic fibrosis: report of a new case with literature review. Am J Kidney Dis 46:754–759

    PubMed  Google Scholar 

  • Darrah TH, Prutsman-Pfeiffer JJ, Poreda RJ, Ellen Campbell M, Hauschka PV, Hannigan RE (2009) Incorporation of excess gadolinium into human bone from medical contrast agents. Metallomics 1:479–488

    CAS  PubMed  Google Scholar 

  • Dassler K, Roohi F, Lohrke J, Ide A, Remmele S, Hütter J, Pietsch H, Pison U, Schütz G (2012) Current limitations of molecular magnetic resonance imaging for tumors as evaluated with high-relaxivity CD105-specific iron oxide nanoparticles. Invest Radiol 47:383–391

    CAS  PubMed  Google Scholar 

  • De Bruyn PP, Michelson S, Bankston PW (1985) In-vivo endocytosis by bristle-coated pits and intracellular transport of endogenous albumin in the endothelium of the sinuses of liver and bone marrow. Cell Tissue Res 240:1–7

    PubMed  Google Scholar 

  • De Remedios C (1986) Lanthanide ion probes of calcium-binding sites on cellular membranes. Cell Calcium 2:29–51

    Google Scholar 

  • Dean PB, Niemi P, Kivisaari L, Kormano M (1988) Comparative pharmacokinetics of gadolinium DTPA and gadolinium chloride. Invest Radiol 23(suppl. 1):258–260

    Google Scholar 

  • Debbage P, Jaschke W (2008) Molecular imaging with nanoparticles: giant roles for dwarf actors. Histochem Cell Biol 130:845–875

    CAS  PubMed  Google Scholar 

  • Debbage P, Thurner GC (2010) Nanomedicine faces barriers. Pharmaceuticals 3:3371–3416

    CAS  PubMed Central  Google Scholar 

  • Debbage P, Thurner GC (2012) Transbarrier targeting in the intestine: nanomedical options in oncology. Int J Clin Pharmacol Ther 50:55–64

    CAS  PubMed  Google Scholar 

  • Del Galdo F, Wermuth PJ, Addya S, Fortina P, Jiménez SA (2010) NFκB activation and stimulation of chemokine production in normal human macrophages by the gadolinium-based magnetic resonance contrast agent Omniscan: possible role in the pathogenesis of nephrogenic systemic fibrosis. Ann Rheum Dis 69:2024–2033

    PubMed  PubMed Central  Google Scholar 

  • Dell’Angelica EC, Mullins C, Caplan S, Bonifacino JS (2000) Lysosome-related organelles. FASEB J 14:1265–1278

    PubMed  Google Scholar 

  • Delp MD, Evans MV, Duan C (1998) Effects of aging on cardiac output, regional blood flow, and body composition in Fischer-344 rats. J Appl Physiol 85:1813–1822

    CAS  PubMed  Google Scholar 

  • Di Gregorio E, Iani R, Ferrauto G, Nuzzi R, Aime S, Gianolio E (2018) Gd accumulation in tissues of healthy mice upon repeated administrations of Gadodiamide and Gadoteridol. J Trace Elem Med Biol 48:239–245

    PubMed  Google Scholar 

  • Diepholz M, Börsch M, Böttcher B (2008) Structural organization of the V-ATPase and its implications for regulatory assembly and disassembly. Biochem Soc Trans 36:1027–1031

    CAS  PubMed  Google Scholar 

  • Do C, Barnes JL, Tan C, Wagner B (2014) Type of MRI contrast, tissue gadolinium, and fibrosis. Am J Physiol Renal Physiol 307:F844–F855

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doane TL, Burda C (2012) The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem Soc Rev 41:2885–2911

    CAS  PubMed  Google Scholar 

  • Docampo R (2016) The origin and evolution of the acidocalcisome and its interactions with other organelles. Mol Biochem Parasitol 209:3–9

    CAS  PubMed  Google Scholar 

  • Docampo R, Huang G (2016) Acidocalcisomes of eukaryotes. Curr Opin Cell Biol 41:66–72

    CAS  PubMed  PubMed Central  Google Scholar 

  • Docampo R, Moreno SN (2011) Acidocalcisomes. Cell Calcium 50:113–119

    CAS  PubMed  PubMed Central  Google Scholar 

  • Docampo R, de Souza W, Miranda K, Rohloff P, Moreno SNJ (2005) Acidocalcisomes—conserved from bacteria to man. Nat Rev Microbiol 3:251–261

    CAS  PubMed  Google Scholar 

  • Docampo R, Ulrich P, Moreno SNJ (2010) Evolution of acidocalcisomes and their role in polyphosphate storage and osmoregulation in eukaryotic microbes. Philos Trans R Soc Lond B Biol 365:775–784

    CAS  Google Scholar 

  • Drouven BJ, Evans CH (1986) Collagen fibrillogenesis in the presence of lanthanides. J Biol Chem 261:11792–11797

    CAS  PubMed  Google Scholar 

  • Edward M, Quinn JA, Mukherjee S, Jensen MBV, Jardine AG, Mark PB, Burden AD (2008) Gadodiamide contrast agent 'activates' fibroblasts: a possible cause of nephrogenic systemic fibrosis [published correction appears in J Pathol 2008 aPR;214: 593]. J Pathol 214:584–593

    CAS  PubMed  Google Scholar 

  • Edward M, Quinn JA, Burden AD, Newton BB, Jardine AG (2010) Effect of different classes of gadolinium-based contrast agents on control and nephrogenic systemic fibrosis-derived fibroblast proliferation. Radiology 256:735–743

    PubMed  Google Scholar 

  • Eipel C, Abshagen K, Vollmar B (2010) Regulation of hepatic blood flow: the hepatic arterial buffer response revisited. World J Gastroenterol 16:6046–6057

    PubMed  PubMed Central  Google Scholar 

  • Ercan-Fang N, Gannon MC, Rath VL, Treadway JL, Taylor MR, Nuttall FQ (2002) Integrated effects of multiple modulators on human liver glycogen phosphorylase a. Am J Physiol Endocrinol Metab 283:29–37

    Google Scholar 

  • Errante Y, Cirimele V, Mallio CA, Di Lazzaro V, Zobel BB, Quattrocchi CC (2014) Progressive increase of T1 signal intensity of the dentate nucleus on unenhanced magnetic resonance images is associated with cumulative doses of intravenously administered gadodiamide in patients with normal renal function, suggesting dechelation. Invest Radiol 49:685–690

    CAS  PubMed  Google Scholar 

  • Eskild W, Kindberg GM, Smedsrød B, Blomhoff R, Norum KR, Berg T (1989) Intracellular transport of formaldehyde-treated serum albumin in liver endothelial cells after uptake via scavenger receptors. Biochem J 258:511–520

    CAS  PubMed  PubMed Central  Google Scholar 

  • European Medicines Agency (2010) Assessment report for Gadolinium-containing contrast agents. https://www.ema.europa.eu/docs/en_GB/document_library/Referrals_document/gadolinium_31/WC500099538.pdf. Accessed 23 Mar 2020

  • European Medicines Agency (2017) EMA’s final opinion confirms restrictions on use of linear gadolinium agents in body scans. https://www.ema.europa.eu/docs/en_GB/document_library/Referrals_document/gadolinium_contrast_agents_31/European_Commission_final_decision/WC500240575.pdf. Accessed 23 Mar 2020

  • Evans C (1990) Biochemistry of the lanthanides. Plenum Press, New York

    Google Scholar 

  • Evans CH, Drouven BJ (1983) The promotion of collagen polymerization by lanthanide and calcium ions. Biochem J 213:751–758

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fogelman AM, Schechter J, Hokom M, Child JS, Edwards PA (1980) Malondialdehyde alteration of low density lipoproteins leads to cholesteryl ester accumulation in human monocyte-macrophages. Proc Natl Acad Sci USA 77:2214–2218

    CAS  PubMed  Google Scholar 

  • Food and Drug Administration (2010) Drug safety communication: new warnings for using gadolinium-based contrast agents in patients with kidney dysfunction. https://www.fda.gov/Drugs/DrugSafety/ucm223966.htm. Accessed 23 Mar 2020

  • Food and Drug Administration (2017) Drug safety communication: FDA identifies no harmful effects to date with brain retention of gadolinium-based contrast agents for MRIs; review to continue. https://www.fda.gov/Drugs/DrugSafety/ucm559007.htm. Accessed 23 Mar 2020

  • Food and Drug Administration (2018) FDA drug safety communication: FDA warns that gadolinium-based contrast agents (GBCAs) are retained in the body; requires new class warnings. https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-warns-gadolinium-based-contrast-agents-gbcas-are-retained-body. Accessed 18 Aug 2020

  • Forgac M (2007) Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol 8:917–929

    CAS  PubMed  Google Scholar 

  • Franke H, Dürer U, Schlag B, Dargel R (1987) In vivo binding and uptake of low-density lipoprotein-gold- and albumin-gold conjugates by parenchymal and sinusoidal cells of the fetal rat liver. Cell Tissue Res 249:221–226

    CAS  PubMed  Google Scholar 

  • Frenzel T, Lengsfeld P, Schirmer H, Hütter J, Weinmann HJ (2008) Stability of gadolinium-based magnetic resonance imaging contrast agents in human serum at 37 degrees C. Invest Radiol 43:817–828

    CAS  PubMed  Google Scholar 

  • Fretellier N, Salhi M, Schroeder J, Siegmund H, Chevalier T, Bruneval P, Jestin-Mayer G, Delaloge F, Factor C, Mayer JF, Fabicki JM, Robic C, Bonnemain B, Idée JM, Corot C (2015) Distribution profile of gadolinium in gadolinium chelate-treated renally-impaired rats: role of pharmaceutical formulation. Eur J Pharm Sci 72:46–56

    CAS  PubMed  Google Scholar 

  • Geoffrey JS, Becker RP (1984) Endocytosis by endothelial phagocytes: uptake of bovine serum albumin-gold conjugates in bone marrow. J Ultrastruct Res 89:223–239

    Google Scholar 

  • Gerasimaitė R, Sharma S, Desfougères Y, Schmidt A, Mayer A (2014) Coupled synthesis and translocation restrains polyphosphate to acidocalcisome-like vacuoles and prevents its toxicity. J Cell Sci 127:5093–5104

    PubMed  Google Scholar 

  • Ghinea N, Fixman A, Alexander D, Popov D, Hasu M, Ghitescu L, Eskenasy M, Simionescu M, Simionescu N (1988) Identification of albumin-binding proteins in capillary endothelial cells. J Cell Biol 107:231–239

    CAS  PubMed  Google Scholar 

  • Ghitescu L, Bendayan M (1992) Transendothelial transport of serum albumin: a quantitative immunocytochemical study. J Cell Biol 117:745–755

    CAS  PubMed  Google Scholar 

  • Gibby WA, Gibby KA, Gibby WA (2004) Comparison of Gd DTPA-BMA (Omniscan) versus Gd HP-DO3A (ProHance) retention in human bone tissue by inductively coupled plasma atomic emission spectroscopy. Invest Radiol 39:138–142

    PubMed  Google Scholar 

  • Gibson SE, Farver CF, Prayson RA (2006) Multiorgan involvement in nephrogenic fibrosing dermopathy: an autopsy case and review of the literature. Arch Pathol Lab Med 130:209–212

    PubMed  Google Scholar 

  • Gitlin D, Latta H, Batchelor WH, Janeway CA (1951) Experimental hypersensitivity in the rabbit: disappearance rates of native and labelled heterologous proteins from the serum after intravenous injection. J Immunol 66:451–461

    CAS  PubMed  Google Scholar 

  • Goldsworthy PD, Volwiler W (1957) Comparative metabolic fate of chemically (I131) and biosynthetically (C14- or S35-) labeled proteins. Ann NY Acad Sci 70:26–48

    CAS  PubMed  Google Scholar 

  • Gomes FM, Oliveira DM, Motta LS, Ramos IB, Miranda KM, Machado EA (2010) Inorganic polyphosphate inhibits an aspartic protease-like activity in the eggs of Rhodnius prolixus (Stahl) and impairs yolk mobilization in vitro. J Cell Physiol 222:606–611

    CAS  PubMed  Google Scholar 

  • Gou BD, Bian S, Zhang TL, Wang K (2010) Gadolinium-promoted precipitation of calcium phosphate is associated with profibrotic activation of RAW 264.7 macrophages. Toxicol Vitro 24:1743–1749

    CAS  Google Scholar 

  • Grabe M, Wang H, Oster G (2000) The mechanochemistry of V-ATPase proton pumps. Biophys J 78:2798–2813

    CAS  PubMed  PubMed Central  Google Scholar 

  • Greenberg SA (2010) Zinc transmetallation and gadolinium retention after MR imaging: case report. Radiology 257:670–673

    PubMed  Google Scholar 

  • Greenway CV, Seaman KL, Innes IR (1985) Norepinephrine on venous compliance and unstressed volume in cat liver. Am J Physiol 248:H468–H476

    CAS  PubMed  Google Scholar 

  • Grobner T (2006a) Gadolinium—a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant 21:1104–1108

    CAS  PubMed  Google Scholar 

  • Grobner T (2006b) Gadolinium—a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant 21:1745

    CAS  Google Scholar 

  • Gross JB Jr, Myers BM, Kost LJ, Kuntz SM, LaRusso NF (1989) Biliary copper excretion by hepatocyte lysosomes in the rat. J Clin Invest 83:30–39

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haase A, Matthaei D, Bartkowski R, Duhmke E, Leibfritz D (1989) Inversion recovery snapshot FLASH MR imaging. J Comput Assist Tomogr 13:1036–1040

    CAS  PubMed  Google Scholar 

  • Haberland ME, Olch CL, Fogelman AM (1984) Role of lysines in mediating interaction of modified low density lipoproteins with the scavenger receptor of human monocyte macrophages. J Biol Chem 259:11305–11311

    CAS  PubMed  Google Scholar 

  • Haleem RM, Salem MY, Fatahallah FA, Abdelfattah LE (2015) Quality in the pharmaceutical industry—a literature review. Saudi Pharm J 23:463–469

    PubMed  Google Scholar 

  • Haley TJ (1965) Pharmacology and toxicology of the rare earth elements. J Pharmac Sci 54:663–670

    CAS  Google Scholar 

  • Haley TJ, Raymond K, Komesu N, Upham HC (1961) Toxicological and pharmacological effects of gadolinium and samarium chlorides. Br J Pharmacol Chemother 17:526–532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hals PA, Høgset A (1990) Disposition of gadolinium after high and low doses of gadolinium chloride to mice: organ distribution, elimination, and subcellular localization in liver cells. In: Proc Int Soc Magnet Reson Med, ninth annual scientific meeting and exhibition, August 18–24 1990, New York, USA, Supplement S3:1199

  • Hansen B, Longati P, Elvevold K, Nedredal GI, Schledzewski K, Olsen R, Falkowski M, Kzhyshkowska J, Carlsson F, Johansson S, Smedsrød B, Goerdt S, Johansson S, McCourt P (2005) Stabilin-1 and stabilin-2 are both directed into the early endocytic pathway in hepatic sinusoidal endothelium via interactions with clathrin/AP-2, independent of ligand binding. Exp Cell Res 303:160–173

    CAS  PubMed  Google Scholar 

  • Hapuarachchige S, Artemov D (2020) Theranostic pretargeting drug delivery and imaging platforms in cancer precision medicine. Front Oncol 10:1131

    PubMed  PubMed Central  Google Scholar 

  • Hardonk MJ, Dijkhuis FWJ, Hulstaert CE, Koudstaal J (1992) Heterogeneity of rat liver and spleen macrophages in gadolinium chloride-induced elimination and repopulation. J Leukocyte Biol 52:296–302

    CAS  PubMed  Google Scholar 

  • Haylor J, Schroeder J, Wagner B, Nutter F, Jestin G, Idée JM, Morcos S (2012) Skin gadolinium following use of MR contrast agents in a rat model of nephrogenic systemic fibrosis. Radiology 263:107–116

    PubMed  Google Scholar 

  • Heinrikson RL (1969) Purification and characterization of a low molecular weight acid phosphatase from bovine liver. J Biol Chem 244:299–307

    CAS  PubMed  Google Scholar 

  • Hermann P, Kotek J, Kubíček V, Lukeš I (2008) Gadolinium(III) complexes as MRI contrast agents: ligand design and properties of the complexes. Dalton Trans 23:3027–3047

    Google Scholar 

  • Herzog S, Ostwald D (2013) Sometimes Bayesian statistics are better. Nature 494:35

    CAS  PubMed  Google Scholar 

  • Hirano S, Suzuki KT (1996) Exposure, metabolism and toxicity of rare earth and related compounds. Environ Health Perspect 104:85–95

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hocine N, Berry JP, Jaafoura H, Escaig F, Masse R, Galle P (1995) Subcellular localization of gadolinium injected as soluble salt in rats: a microanalytical study. Cell Mol Biol 41:271–278

    CAS  PubMed  Google Scholar 

  • Hodgetts VE (1961) The dynamic red cell storage function of the spleen in sheep. III. Relationship to determination of blood volume, total red cell volume, and plasma volume. Aust J Exp Biol 39:187–196

    CAS  Google Scholar 

  • Holland PWH, Harper SJ, McVey JH, Hogan BLM (1987) In vivo expression of mRNA for the Ca++-binding protein SPARC (Osteonectin) revealed by in situ hybridization. J Cell Biol 105:473–482

    CAS  PubMed  Google Scholar 

  • Huang G, Docampo R (2015) Proteomic analysis of acidocalcisomes of Trypanosoma brucei uncovers their role in phosphate metabolism, cation homeostasis, and calcium signaling. Commun Integr Biol 8:e1017174

    PubMed  PubMed Central  Google Scholar 

  • Huang G, Ulrich PN, Storey M, Johnson D, Tischer J, Tovar JA, Moreno SN, Orlando R, Docampo R (2014) Proteomic analysis of the acidocalcisome, an organelle conserved from bacteria to human cells. PLoS Pathog 10:e1004555

    PubMed  PubMed Central  Google Scholar 

  • Hudson HM, Larkin RS (1994) Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 13:601–609

    CAS  PubMed  Google Scholar 

  • Hvattum E, Normann PT, Jamieson GC, Lai JJ, Skotland T (1995) Detection and quantitation of gadolinium chelates in human serum and urine by high-performance liquid chromatography and post-column derivatization of gadolinium with Arsenazo III. J Pharm Biomed Anal 13:927–932

    CAS  PubMed  Google Scholar 

  • Idée JM, Port M, Raynal I, Schaefer M, Greneur SL, Corot C (2006) Clinical and biological consequences of transmetallation induced by contrast agents for magnetic resonance imaging: a review. Fundam Clin Pharmacol 20:563–576

    PubMed  Google Scholar 

  • Igarashi M, Hollander VP (1968) Acid phosphatase from rat liver. Purification, crystallization, and properties. J Biol Chem 243:6084–6089

    CAS  PubMed  Google Scholar 

  • Jadot M, Wattiaux-De Coninck S, Wattiaux R (1985) Effect on lysosomes of invertase endocytosed by rat-liver. Eur J Biochem 151:485–488

    CAS  PubMed  Google Scholar 

  • Jiménez SA, Artlett CM, Sandorfi N, Derk CT, Latinis K, Sawaya H, Haddad R, Shanahan JC (2004) Dialysis-associated systemic fibrosis (nephrogenic fibrosing dermopathy): study of inflammatory cells and transforming growth factor beta1 expression in affected skin. Arthritis Rheum 50:2660–2666

    PubMed  Google Scholar 

  • John TA, Vogel SM, Tiruppathi C, Malik AB, Minshall RD (2003) Quantitative analysis of albumin uptake and transport in the rat microvessel endothelial monolayer. Am J Physiol Lung Cell Mol Physiol 284:L187–L196

    CAS  PubMed  Google Scholar 

  • Jono T, Miyazaki A, Nagai R, Sawamura T, Kitamura T, Horiuchi S (2002) Lectin-like oxidized low density lipoprotein receptor-1 (LOX-1) serves as an endothelial receptor for advanced glycation end products (AGE). FEBS Lett 511:170–174

    CAS  PubMed  Google Scholar 

  • Juran JM (1992) Juran on quality by design: the new steps for planning quality into goods and services. The Free Press, New York

    Google Scholar 

  • Kanal E, Shellock FG (1996) Safety manual on magnetic resonance imaging contrast agents. Lippincott-Raven Healthcare, Cedar Knolls

    Google Scholar 

  • Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D (2014) High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 270:834–841

    PubMed  Google Scholar 

  • Kanda T, Fukusato T, Matsuda M, Toyoda K, Oba H, Kotoku J, Haruyama T, Kitajima K, Furui S (2015) Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy. Radiology 276:228–232

    PubMed  Google Scholar 

  • Kartamihardja AAP, Nakajima T, Kameo S, Koyama H, Tsushima Y (2016) Impact of impaired renal function on gadolinium retention after administration of gadolinium-based contrast agents in a mouse model. Invest Radiol 51:655–660

    CAS  PubMed  Google Scholar 

  • Kenner T (1989) The measurement of blood density and its meaning. Basic Res Cardiol 84:111–124

    CAS  PubMed  Google Scholar 

  • Kindberg GM, Uran S, Friisk G, Martinsen I, Skotland T (2010) The fate of Gd and chelate following intravenous injection of gadodiamide in rats. Eur Radiol 20:1636–1643

    PubMed  PubMed Central  Google Scholar 

  • Kjekshus H, Risoe C, Scholz T, Smiseth OA (1997) Regulation of hepatic vascular volume. Contributions from active and passive mechanisms during catecholamine and sodium nitroprusside infusion. Circulation 96:4415–4423

    CAS  PubMed  Google Scholar 

  • Kodama T, Reddy P, Kishimoto C, Krieger M (1988) Purification and characterization of a bovine acetyl low density lipoprotein receptor. Proc Natl Acad Sci USA 85:9238–9242

    CAS  PubMed  Google Scholar 

  • Kodama T, Freeman M, Rohrer L, Zabrecky J, Matsudaira P, Krieger M (1990) Type I macrophage scavenger receptor contains alpha-helical and collagen-like coiled coils. Nature 343:531–535

    CAS  PubMed  Google Scholar 

  • Köpf-Maier P (1990) The phosphorus content of lysosomes in hepatocytes and Kupffer cells. A study using electron-spectroscopic imaging. Acta Anat (Basel) 139:164–172

    Google Scholar 

  • Korkusuz H, Ulbrich K, Welzel K, Koeberle V, Watcharin W, Bahr U, Chernikov V, Knobloch T, Petersen S, Huebner F, Ackermann H, Gelperina S, Kromen W, Hammerstingl R, Haupenthal J, Gruenwald F, Fiehler J, Zeuzem S, Kreuter J, Vogl TJ, Piiper A (2013) Transferrin-coated gadolinium nanoparticles as MRI contrast agent. Mol Imaging Biol 15:148–154

    PubMed  Google Scholar 

  • Kornberg A (1999) Inorganic polyphosphate: a molecule of many functions. Prog Mol Subcell Biol 23:1–18

    CAS  PubMed  Google Scholar 

  • Korolenko TA, Svechnikova IG (1998) Regulation of liver cysteine proteinases during macrophagal stimulation and depression. Vestn Ross Akad Med Nauk 10:26–29

    Google Scholar 

  • Korolenko T, Svechnikova I, Urazgaliyev K, Vakulin G, Djanaeva S (1997) Liver cysteine proteinases in macrophage depression induced by gadolinium chloride. Adv Exp Med Biol 421:315–321

    CAS  PubMed  Google Scholar 

  • Koudstaal J, Dijkhuis FWJ, Hardonk MJ (1991) Selective depletion of Kupffer cells after intravenous injection of gadolinium chloride. In: Wisse E, Knook DL, McCuskey RS (eds) Cells of the hepatic sinusoid, 3rd edn. TheKupffer Cell Foundation, Rijswijk

    Google Scholar 

  • Kremser C, Trieb T, Rudisch A, Judmaier W, de Vries A (2007) Dynamic T(1) mapping predicts outcome of chemoradiation therapy in primary rectal carcinoma: sequence implementation and data analysis. J Magn Reson Imaging 26:662–671

    PubMed  Google Scholar 

  • Kubota Y, Takahashi S, Takahashi I, Patrick G (2000) Different cytotoxic response to gadolinium between mouse and rat alveolar macrophages. Toxicol Vitro 14:309–319

    CAS  Google Scholar 

  • Kulaev I, Kulakovskaya T (2000) Polyphosphate and phosphate pump. Annu Rev Microbiol 54:709–734

    CAS  PubMed  Google Scholar 

  • Kulaev IS, Vagabov VM (1983) Polyphosphate metabolism in micro-organisms. Adv Microb Physiol 24:83–171

    CAS  PubMed  Google Scholar 

  • Kulaev I, Vagabov V, Kulakovskaya T (1999) New aspects of inorganic polyphosphate metabolism and function. J Biosci Bioeng 88:111–129

    CAS  PubMed  Google Scholar 

  • Kumar K, Chang CA, Francesconi LC, Dischino DD, Malley MF, Gougoutas JZ, Tweedle MF (1994) Synthesis, stability, and structure of gadolinium(III) and yttrium(III) macrocyclic poly(amino carboxylates). Inorg Chem 33:3567–3575

    CAS  Google Scholar 

  • Kuo PH, Kanal E, Abu-Alfa AK, Cowper SE (2007) Gadolinium-based MR contrast agents and nephrogenic systemic fibrosis. Radiology 242:647–649

    PubMed  Google Scholar 

  • Lander N, Cordeiro C, Huang G, Docampo R (2016) Polyphosphate and acidocalcisomes. Biochem Soc Trans 44:1–6

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lanyi JK, Pohorille A (2001) Proton pumps: mechanism of action and applications. Trends Biotechnol 19:140–144

    CAS  PubMed  Google Scholar 

  • Lanza GM, Winter PM, Caruthers SD, Morawski AM, Schmieder AH, Crowder KC, Wickline SA (2004) Magnetic resonance molecular imaging with nanoparticles. J Nucl Cardiol 11:733–743

    PubMed  Google Scholar 

  • Lauffer RB (1987) Paramagnetic metal complexes as water proton relaxation agents for MRI imaging: theory and design. Chem Rev 87:901–927

    CAS  Google Scholar 

  • Laurent S, Vander Elst L, Copoix F, Müller RN (2001) Stability of MRI paramagnetic contrast media. A proton relaxometric protocol for transmetallation assessment. Invest Radiol 36:115–122

    CAS  PubMed  Google Scholar 

  • Laurent S, Vander Elst L, Müller RN (2006) Comparative study of the physicochemical properties of six clinical low molecular weight gadolinium contrast agents. Contrast Media Mol Imaging 1:128–137

    CAS  PubMed  Google Scholar 

  • Lautt WW (1977) Hepatic vasculature: a conceptual review. Gastroenterology 73:1163–1169

    CAS  PubMed  Google Scholar 

  • Lautt WW, Greenway CV (1976) Hepatic venous compliance and role of liver as a blood reservoir. Am J Physiol 231:292–295

    CAS  PubMed  Google Scholar 

  • Lazar G (1973) The reticuloendothelial-blocking effect of rare earth metals in rats. J Reticuloendothel Soc 13:231–237

    CAS  PubMed  Google Scholar 

  • LeBoit PE (2003) What nephrogenic fibrosing dermopathy might be. Arch Dermatol 139:928–930

    PubMed  Google Scholar 

  • Lee HB, Blaufox MD (1985) Blood volume in the rat. J Nucl Med 25:72–76

    Google Scholar 

  • Lemercier G, Espiau B, Ruiz FA, Vieira M, Luo S, Baltz T, Docampo R, Bakalara N (2004) A pyrophosphatase regulating polyphosphate metabolism in acidocalcisomes is essential for Trypanosoma brucei virulence in mice. J Biol Chem 279:3420–3425

    CAS  PubMed  Google Scholar 

  • LeSage GD, Kost LJ, Barham SS, LaRusso NF (1986) Biliary excretion of iron from hepatocyte lysosomes in the rat. A major excretory pathway in experimental iron overload. J Clin Invest 77:90–97

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levine JM, Taylor RA, Elman LB, Bird SJ, Lavi E, Stolzenberg ED, McGarvey ML, Asbury AK, Jiménez SA (2004) Involvement of skeletal muscle in dialysis-associated systemic fibrosis (nephrogenic fibrosing dermopathy). Muscle Nerve 30:569–577

    PubMed  Google Scholar 

  • Li Y, Liu H, Gaskari SA, McCafferty D-M, Lee SS (2006) Hepatic venous dysregulation contributes to blood volume pooling in cirrhotic rats. Gut 55:1030–1035

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li JX, Liu JC, Wang K, Yang XG (2010) Gadolinium-containing bioparticles as an active entity to promote cell cycle progression in mouse embryo fibroblast NIH3T3 cells. J Biol Inorg Chem 15:547–557

    CAS  PubMed  Google Scholar 

  • Liang L, D’Haese PC, Lamberts LV, Van de Vyver FL, De Broe ME (1991) Determination of gadolinium in biological materials using graphite furnace atomic absorption spectrometry with a tantalum boat after solvent extraction. Anal Chem 63:423–427

    CAS  PubMed  Google Scholar 

  • Limet JN, Quintart J, Schneider YJ, Courtoy J (1985) Receptor-mediated endocytosis of polymeric IgA and galactosylated serum albumin in rat liver. Evidence for intracellular ligand sorting and identification of distinct endosomal compartments. Eur J Biochem 146:539–548

    CAS  PubMed  Google Scholar 

  • Loeweneck H, Feifel G (1993) Bauch. Ein Lehr- und Hilfsbuch der anatomischen Grundlagen ärztlichen Handelns. In: von Lanz T, Wachsmuth W (eds) Praktische Anatomie, Band II, Teil 6. Springer, Berlin, p 490

    Google Scholar 

  • Losco P (1992) Normal development, growth and aging of the spleen. In: Mohr U, Dungworth DL, Capen CC (eds) Pathobiology of the aging rat, 1st edn. ILSI Press, Washington, pp 75–94

    Google Scholar 

  • Luzio JP, Hackmann Y, Dieckmann NMG, Griffiths GM (2014) The biogenesis of lysosomes and lysosome-related organelles. Cold Spring Harb Perspect Biol 6:a016840

    PubMed  PubMed Central  Google Scholar 

  • Mann JS (1993) Stability of gadolinium complexes in vitro and in vivo. J Comput Assist Tomogr 17(Suppl 1):S19–23

    PubMed  Google Scholar 

  • Maramattom BV, Manno EM, Wijdicks EF, Lindell EP (2005) Gadolinium encephalopathy in a patient with renal failure. Neurology 64:1276–1278

    PubMed  Google Scholar 

  • Marckmann P, Skov L, Rossen K, Heaf JG, Thomsen HS (2007) Case-control study of gadodiamide-related nephrogenic systemic fibrosis. Nephrol Dial Transplant 22:3174–3178

    CAS  PubMed  Google Scholar 

  • Marks MS, Heijnen HFG, Raposo G (2013) Lysosome-related organelles. Unusual compartments become mainstream. Curr Opin Cell Biol 25:495–505

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer U, Aumailley M, Mann K, Timpl R, Engel J (1991) Calcium-dependent binding of basement membrane protein BM-40 (osteonectin, SPARC) to basement membrane collagen type IV. Eur J Biochem 198:141–150

    CAS  PubMed  Google Scholar 

  • McDonald RJ, McDonald JS, Kallmes DF, Jentoft ME, Murray DL, Thielen KR, Williamson EE, Eckel LJ (2015) Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology 275:772–782

    PubMed  Google Scholar 

  • McDonald JS, McDonald RJ, Jentoft ME, Paolini MA, Murray DL, Kallmes DF, Eckel LJ (2017a) Intracranial gadolinium deposition following gadodiamide-enhanced magnetic resonance imaging in pediatric patients: a case-control study. JAMA Pediatr 171:705–707

    PubMed  PubMed Central  Google Scholar 

  • McDonald RJ, McDonald JS, Kallmes DF, Jentoft ME, Paolini MA, Murray DL, Williamson EE, Eckel LJ (2017b) Gadolinium deposition in human brain tissues after contrast-enhanced MR imaging in adult patients without intracranial abnormalities. Radiology 285:546–554

    PubMed  Google Scholar 

  • McDonald RJ, McDonald JS, Dai D, Schroeder D, Jentoft ME, Murray DL, Kadirvel R, Eckel LJ, Kallmes DF (2017c) Comparison of gadolinium concentrations within multiple rat organs after intravenous administration of linear versus macrocyclic gadolinium chelates. Radiology 285:536–545

    PubMed  Google Scholar 

  • McFarlane AS (1957) The behaviour of I131-labeled plasma proteins in vivo. Ann NY Acad Sci 70:19–25

    CAS  PubMed  Google Scholar 

  • McMurry TJ, Pippin CG, Wu C, Deal KA, Brechbiel MW, Mirzadeh S, Gansow OA (1998) Physical parameters and biological stability of yttrium(III) diethylenetriaminepentaacetic acid derivative conjugates. J Med Chem 41:3546–3549

    CAS  PubMed  Google Scholar 

  • Mego JL (1971) The effect of pH on cathepsin activities in mouse liver heterolysosomes. Biochem J 122:445–452

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mego JL (1984) Role of thiols, pH and cathepsin D in the lysosomal catabolism of serum albumin. Biochem J 218:775–783

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mellman I, Fuchs R, Helenius A (1986) Acidification of the endocytic and exocytic pathways. Annu Rev Biochem 55:663–700

    CAS  PubMed  Google Scholar 

  • Mendoza M, Mijares A, Rojas H, Rodríguez JP, Urbina JA, DiPolo R (2002) Physiological and morphological evidences for the presence of acidocalcisomes in Trypanosoma evansi: single cell fluorescence and 31P NMR studies. Mol Biochem Parasitol 125:23–33

    CAS  PubMed  Google Scholar 

  • Mendoza FA, Artlett CM, Sandorfi N, Latinis K, Piera-Velazquez S, Jiménez SA (2006) Description of 12 cases of nephrogenic fibrosing dermopathy and review of the literature. Semin Arthritis Rheum 35:238–249

    PubMed  PubMed Central  Google Scholar 

  • Mercantepe T, Tümkaya L, Çeliker FB, Topal Suzan Z, Çinar S, Akyildiz K, Mercantepe F, Yilmaz A (2018) Effects of gadolinium-based MRI contrast agents on liver tissue. J Magn Reson Imaging 48:1367–1374

    PubMed  Google Scholar 

  • Mezyk SP, Gaskins DK, Cullen TD, Martin LR, Mincher BJ (2010) Radiolytic stability of metal-complexed extraction ligands under aqueous acidic reprocessing conditions. In: Proceedings of First ACSEPT international workshop, Lisbon, Portugal, 31 March–2 April 2010

  • Mhamdi M, Badri N, Florea A, Matei H, Maghraoui S, Tekaya L (2017) The effects of gadolinium in the uterus and in the ovary of pregnant rat: ultrastructural study. EC Gynaecol 5:238–247

    Google Scholar 

  • Milici AJ, Watrous NE, Stukenbrok H, Palade GE (1987) Transcytosis of albumin in capillary endothelium. J Cell Biol 105:2603–2612

    CAS  PubMed  Google Scholar 

  • Minshall RD, Tiruppathi C, Vogel SM, Malik AB (2002) Vesicle formation and trafficking in endothelial cells and regulation of endothelial barrier function. Histochem Cell Biol 117:105–112

    CAS  PubMed  Google Scholar 

  • Miranda K, Benchimol M, Docampo R, de Souza W (2000) The fine structure of acidocalcisomes in Trypanosoma cruzi. Parasitol Res 86:373–384

    CAS  PubMed  Google Scholar 

  • Miranda K, Docampo R, Grillo O, de Souza W (2004a) Acidocalcisomes of trypanosomatids have species-specific elemental composition. Protist 155:395–405

    CAS  PubMed  Google Scholar 

  • Miranda K, Docampo R, Grillo O, Franzen A, Attias M, Vercesi A, Plattner H, Hentschel J, de Souza W (2004b) Dynamics of polymorphism of acidocalcisomes in Leishmania parasites. Histochem Cell Biol 121:407–418

    CAS  PubMed  Google Scholar 

  • Mizgerd JP, Molina RM, Stearns RC, Brain JD, Warner AE (1996) Gadolinium induces macrophage apoptosis. J Leukoc Biol 59:189–195

    CAS  PubMed  Google Scholar 

  • Morcos SK (2007a) Nephrogenic systemic fibrosis following the administration of extracellular gadolinium-based contrast agents: is the stability of the contrast agent molecule an important factor in the pathogenesis of this condition? Br J Radiol 80:73–76

    CAS  PubMed  Google Scholar 

  • Morcos SK (2007b) Author’s reply to Schmitt-Willich and Tweedle MF. Brit J Radiol 80:584–585

    Google Scholar 

  • Moreau J, Guillon E, Pierrard JC, Rimbault J, Port M, Aplincourt M (2004) Complexing mechanism of the lanthanide cations Eu3+, Gd3+, and Tb3+ with 1,4,7,10-tetrakis-(carboxymethyl)-1,4,7,10-tetraazacyclododecane (DOTA)—characterization of three successive complexing phases: study of the thermodynamic and structural properties of the complexes by potentiometry, luminescence spectroscopy, and EXAFS. Chem Eur J 10:5218–5232

    CAS  PubMed  Google Scholar 

  • Moreno SNJ, Docampo R (2009) The role of acidocalcisomes in parasitic protists. J Eukaryot Microbiol 56:208–213

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno B, Rodrigues CO, Bailey BN, Urbina JA, Moreno SNJ, Docampo R, Oldfield E (2002) Magic-angle spinning 31P NMR spectroscopy of condensed phosphates in parasitic protozoa: visualizing the invisible. FEBS Lett 523:207–212

    CAS  PubMed  Google Scholar 

  • Moreno-Sanchez D, Hernandez-Ruiz L, Ruiz FA, Docampo R (2012) Polyphosphate is a novel pro-inflammatory regulator of mast cells and is located in acidocalcisomes. J Biol Chem 287:28435–28444

    CAS  PubMed  PubMed Central  Google Scholar 

  • Motta LS, Ramos IB, Gomes FM, de Souza W, Champagne DE, Santiago MF, Docampo R, Miranda K, Machado EA (2009) Proton-pyrophosphatase and polyphosphate in acidocalcisome-like vesicles from oocytes and eggs of Periplaneta americana. Insect Biochem Mol Biol 39:198–206

    CAS  PubMed  Google Scholar 

  • Muench SP, Huss M, Song CF, Phillips C, Wieczorek H, Trinick J, Harrison MA (2009) Cryo-electron microscopy of the vacuolar ATPase motor reveals its mechanical and regulatory complexity. J Mol Biol 386:989–999

    CAS  PubMed  Google Scholar 

  • Munthe-Kaas AC, Berg T, Seglen PO, Seljelid R (1975) Mass isolation and culture of rat kupffer cells. J Exp Med 141:1–10

    CAS  PubMed  Google Scholar 

  • Munthe-Kaas AC, Berg T, Seljelid R (1976) Distribution of lysosomal enzymes in different types of rat liver cells. Exp Cell Res 99:146–154

    CAS  PubMed  Google Scholar 

  • Murata N, Gonzalez-Cuyar LF, Murata K, Fligner C, Dills R, Hippe D, Maravilla KR (2016) Macrocyclic and other non-group 1 gadolinium contrast agents deposit low levels of gadolinium in brain and bone tissue: preliminary results from 9 patients with normal renal function. Invest Radiol 51:447–453

    CAS  PubMed  Google Scholar 

  • Murphy RF (1991) Maturation models for endosome and lysosome biogenesis. Trends Cell Biol 1:77–82

    CAS  PubMed  Google Scholar 

  • Najafian B, Franklin DB, Fogo AB (2007) Acute renal failure and myalgia in a transplant patient. J Am Soc Nephrol 18:2870–2874

    CAS  PubMed  Google Scholar 

  • Nakanishi-Matsui M, Sekiya M, Nakamoto RK, Futai M (2010) The mechanism of rotating proton pumping ATPases. Biochim Biophys Acta 1797:1343–1352

    CAS  PubMed  Google Scholar 

  • Neeper M, Schmidt AM, Brett J, Yan SD, Wang F, Pan YC, Elliston K, Stern D, Shaw A (1992) Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem 267:14998–15004

    CAS  PubMed  Google Scholar 

  • Nishi T, Forgac M (2002) The vacuolar (H+)-ATPases—nature’s most versatile proton pumps. Nat Rev Mol Cell Biol 3:94–103

    CAS  PubMed  Google Scholar 

  • O’Haver (2008) https://terpconnect.umd.edu/~toh/spectrum/SignalsAndNoise.html. Accessed 18 Aug 2020

  • Oeff K, Koenig A (1955) Das Blutvolumen einiger Rattenorgane und ihre Restblutmenge nach Entbluten bzw. Durchspülung. Bestimmung mit P32-markierten erythrocyten. Arch Exper Path u Pharmakol Bd 226:98–102

    CAS  Google Scholar 

  • Oh H, Chung YE, You JS, Joo CG, Kim PK, Lim JS, Kim M-J (2020) Gadolinium retention in rat abdominal organs after administration of gadoxetic acid disodium compared to gadodiamide and gadobutrol. Magn Reson Med 84:2124–2132

    CAS  PubMed  Google Scholar 

  • Ohgami N, Nagai R, Ikemoto M, Arai H, Kuniyasu A, Horiuchi S, Nakayama H (2001) Cd36, a member of the class b scavenger receptor family, as a receptor for advanced glycation end products. J Biol Chem 276:3195–3202

    CAS  PubMed  Google Scholar 

  • Ohkuma S, Poole BD (1978) Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci USA 75:3327–3331

    CAS  PubMed  Google Scholar 

  • Ohkuma S, Moriyama Y, Takano T (1982) Identification and characterization of a proton pump on lysosomes by fluorescein isothiocyanate-dextran fluorescence. Proc Natl Acad Sci USA 79:2758–2762

    CAS  PubMed  Google Scholar 

  • Oksendal A, Hals P (1993) Biodistribution and toxicity of MR imaging contrast media. J Magn Reson Imaging 3:157–165

    CAS  PubMed  Google Scholar 

  • Oliveira DM, Gomes FM, Carvalho DB, Ramos I, Carneiro AB, Silva-Neto MA, de Souza W, Lima AP, Miranda K, Machado EA (2013) Yolk hydrolases in the eggs of Anticarsia gemmatalis hubner (Lepidoptera. Noctuidae): a role for inorganic polyphosphate towards yolk mobilization. J Insect Physiol 59:1242–1249

    CAS  PubMed  Google Scholar 

  • Onufriev A, Case DA, Ullmann GM (2001) A novel view of pH titration in biomolecules. Biochemistry 40:3413–3419

    CAS  PubMed  Google Scholar 

  • Ottnad E, Via DP, Sinn H, Friedrich E, Ziegler R, Dresel HA (1990) Binding characteristics of reduced hepatic receptors for acetylated low-density lipoprotein and maleylated bovine serum albumin. Biochem J 265:689–698

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ottnad E, Via DP, Frubis J, Sinn H, Friedrich E, Ziegler R, Dresel HA (1992) Differentiation of binding sites on reconstituted hepatic scavenger receptors using oxidized low-density lipoprotein. Biochem J 281:745–751

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pan D, Caruthers SD, Chen J, Winter PM, SenPan A, Schmieder AH, Wickline SA, Lanza GM (2010) Nanomedicine strategies for molecular targets with MRI and optical imaging. Future Med Chem 2:471–490

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pardridge WM (1993) Transport of insulin-related peptides and glucose across the blood-brain barrier. Ann NY Acad Sci 692:126–137

    CAS  PubMed  Google Scholar 

  • Parkinson-Lawrence EJ, Shandala T, Prodoehl M, Plew R, Borlace GN, Brooks DA (2010) Lysosomal storage disease: revealing lysosomal function and physiology. Physiology (Bethesda) 25:102–115

    CAS  Google Scholar 

  • Patel S, Docampo R (2010) Acidic calcium stores open for business: expanding the potential for intracellular Ca2+ signaling. Trends Cell Biol 20:277–286

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paul-Roth C, Raymond KN (1995) Amide functional group contribution to the stability of gadolinium(III) complexes: DTPA derivatives. Inorg Chem 34:1408–1412

    CAS  Google Scholar 

  • Pavelka M, Roth J (2005) Functional ultrastructure: atlas of tissue biology and pathology. Springer, Vienna, p 365

    Google Scholar 

  • Peters JM, Boyd EM (1966) Organ weights and water levels of the rat following reduced food intake. J Nutr 90:354–360

    CAS  PubMed  Google Scholar 

  • Pietsch H, Raschke M, Ellinger-Ziegelbauer H, Jost G, Walter J, Frenzel T, Lenhard D, Hütter J, Sieber MA (2011) The role of residual gadolinium in the induction of nephrogenic systemic fibrosis-like skin lesions in rats. Invest Radiol 46:48–56

    CAS  PubMed  Google Scholar 

  • Pinter GG (1967) Distribution of chylomicrons and albumin in dog kidney. J Physiol 192:761–772

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pisoni RL (1991) Characterization of a phosphate transport system in human fibroblast lysosomes. J Biol Chem 266:979–985

    CAS  PubMed  Google Scholar 

  • Pisoni RL, Lindley ER (1992) Incorporation of [32P]orthophosphate into long chains of inorganic polyphosphate within lysosomes of human fibroblasts. J Biol Chem 267:3626–3631

    CAS  PubMed  Google Scholar 

  • Pitas RE, Boyles J, Mahley RW, Bissel DM (1985) Uptake of chemically modified low density lipoproteins in vivo is mediated by specific endothelial cells. J Cell Biol 100:103–117

    CAS  PubMed  Google Scholar 

  • Pittman RC, Carew TE, Glass CK, Green SR, Taylor CA Jr, Attie AD (1983) A radioiodinated, intracellularly trapped ligand for determining the sites of plasma protein degradation in vivo. Biochem J 212:791–800

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poisson J, Lemoinne S, Boulanger C, Durand F, Moreau R, Valla D, Rautou PE (2017) Liver sinusoidal endothelial cells: physiology and role in liver diseases. J Hepatol 66:212–227

    CAS  PubMed  Google Scholar 

  • Poole B, Ohkuma S (1981) Effect of weak bases on the intralysosomal pH in mouse peritoneal macrophages. J Cell Biol 90:665–669

    CAS  PubMed  Google Scholar 

  • Port M, Idée JM, Medina C, Dencausse A, Corot C (2008a) Stability of gadolinium chelates and their biological consequences: new data and some comments. Brit J Radiol 81:258–259

    CAS  PubMed  Google Scholar 

  • Port M, Idée JM, Medina C, Robic C, Sabatou M, Corot C (2008b) Efficiency, thermodynamic and kinetic stability of marketed gadolinium chelates and their possible clinical consequences: a critical review. Biometals 21:469–490

    CAS  PubMed  Google Scholar 

  • Radbruch A (2018) Gadolinium deposition in the brain: we need to differentiate between chelated and dechelated gadolinium. Radiology 288:434–435

    PubMed  Google Scholar 

  • Radbruch A, Weberling LD, Kieslich PJ, Eidel O, Burth S, Kickingereder P, Heiland S, Wick W, Schlemmer HP, Bendszus M (2015) Gadolinium retention in the dentate nucleus and globus pallidus is dependent on the class of contrast agent. Radiology 275:783–791

    PubMed  Google Scholar 

  • Ramalho J, Castillo M, AlObaidy M, Nunes RH, Ramalho M, Dale BM, Semelka RC (2015) High signal intensity in globus pallidus and dentate nucleus on unenhanced T1-weighted MR images: evaluation of two linear gadolinium-based contrast agents. Radiology 276:836–844

    PubMed  Google Scholar 

  • Ramos IB, Miranda K, Pace DA, Verbist KC, Lin FY, Zhang Y, Oldfield E, Machado EA, De Souza W, Docampo R (2010a) Calcium- and polyphosphate-containing acidic granules of sea urchin eggs are similar to acidocalcisomes, but are not the targets for NAADP. Biochem J 429:485–495

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos IB, Miranda K, Ulrich P, Ingram P, LeFurgey A, Machado EA, de Souza W, Docampo R (2010b) Calcium- and polyphosphate-containing acidocalcisomes in chicken egg yolk. Biol Cell 102:421–434

    CAS  PubMed  Google Scholar 

  • Ramos I, Gomes F, Koeller CM, Saito K, Heise N, Masuda H, Docampo R, de Souza W, Machado EA, Miranda K (2011) Acidocalcisomes as calcium- and polyphosphate-storage compartments during embryogenesis of the insect Rhodnius prolixus Stahl. PLoS ONE 6:e27276

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rasschaert M, Schroeder JA, Wu T-D, Marco S, Emerit A, Siegmund H, Fischer C, Fretellier N, Idée J-M, Corot C, Brochhausen C, Guerquin-Kern J-L (2018a) Multimodal imaging study of gadolinium presence in rat cerebellum: differences between Gd chelates, presence in the Virchow-Robin space, association with lipofuscin, and hypotheses about distribution pathway. Invest Radiol 53:518–528

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rasschaert M, Emerit A, Fretellier N, Factor C, Robert P, Idée J-M, Corot C (2018b) Gadolinium retention, brain T1 hyperintensity, and endogenous metals: a comparative study of macrocyclic versus linear gadolinium chelates in renally sensitized rats. Invest Radiol 53:328–337

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rathore AS, Winkle H (2009) Quality by design for biopharmaceuticals. Nat Biotechnol 27:26–34

    CAS  PubMed  Google Scholar 

  • Reed RG, Burrington CM (1989) The albumin receptor effect may be due to a surface-induced conformational change in albumin. J Biol Chem 264:9867–9872

    CAS  PubMed  Google Scholar 

  • Reilly D (1985) Innervation and vascular pharmacodynamics of the mammalian spleen. Experientia 41:187–192

    CAS  PubMed  Google Scholar 

  • Reynolds WW, Karlotski WJ (1977) The allometric relationship of skeleton weight to body weight in teleost fishes: a preliminary comparison with birds and mammals. Copeia 1977:160–163

    Google Scholar 

  • Rinck PA (2008) Radiologists meet with heavy collateral damage. Diagn Imaging Eur 24:19–21

    Google Scholar 

  • Robert P, Fingerhut S, Factor C et al (2018) One-year retention of gadolinium in the brain: comparison of gadodiamide and gadoterate meglumine in a rodent model. Radiology 288:424–433

    PubMed  Google Scholar 

  • Rocklage SM, Watson AD, Carvlin MJ (1992) Contrast agents in magnetic resonance imaging. In: Stark DD, Bradley WG (eds) Magnetic resonance imaging. Mosby, St Louis, pp 372–437

    Google Scholar 

  • Rodrigues CO, Ruiz FA, Vieira M, Hill JE, Docampo R (2002) An acidocalcisomal exopolyphosphatase from Leishmania major with higher affinity for short-term polyphosphate. J Biol Chem 277:50899–50906

    CAS  PubMed  Google Scholar 

  • Rofsky N, Weinreb J, Litt A (1993) Quantitative analysis of gadopentetate dimeglumine excreted in breast milk. J Magn Reson Imaging 3:131–132

    CAS  PubMed  Google Scholar 

  • Rofsky NM, Lee VS, Laub G, Pollack MA, Krinsky GA, Thomasson D, Ambrosino MM, Weinreb JC (1999) Abdominal MR imaging with a volumetric interpolated breath-hold examination. Radiology 212:876–884

    CAS  PubMed  Google Scholar 

  • Rofsky NM, Sherry AD, Lenkinski RE (2008) Nephrogenic systemic fibrosis: a chemical perspective. Radiology 247:608–612

    PubMed  Google Scholar 

  • Rossi Espagnet MC, Bernardi B, Pasquini L, Figà-Talamanca L, Tomà P, Napolitano A (2017) Signal intensity at unenhanced T1-weighted magnetic resonance in the globus pallidus and dentate nucleus after serial administrations of a macrocyclic gadolinium-based contrast agent in children. Pediatr Radiol 47:1345–1352

    PubMed  Google Scholar 

  • Roth J, Taatjes DJ, Tokuyasu KT (1990) Contrasting of Lowicryl K4M thin sections. Histochemistry 95:123–136

    CAS  PubMed  Google Scholar 

  • Rudnick G (1986) ATP-driven H+ pumping into intracellular organelles. Annu Rev Physiol 48:403–415

    CAS  PubMed  Google Scholar 

  • Ruiz FA, Rodrigues CO, Docampo R (2001) Rapid changes in polyphosphate content within acidocalcisomes in response to cell growth, differentiation, and environmental stress in Trypanosoma cruzi. J Biol Chem 276:26114–26121

    CAS  PubMed  Google Scholar 

  • Ruiz FA, Lea CR, Oldfield E, Docampo R (2004) Human platelet dense granules contain polyphosphate and are similar to acidocalcisomes of bacteria and unicellular eukaryotes. J Biol Chem 279:44250–44257

    CAS  PubMed  Google Scholar 

  • Sadowski EA, Bennett LK, Chan MR, Wentland AL, Garrett AL, Garrett RW, Djamali A (2007) Nephrogenic systemic fibrosis: risk factors and incidence estimation. Radiology 243:148–157

    PubMed  Google Scholar 

  • Saftig P, Klumperman J (2009) Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nature Rev 10:623–635

    CAS  Google Scholar 

  • Sanna V, Pala N, Sechi M (2014) Targeted therapy using nanotechnology: focus on cancer. Int J Nanomed 9:467–483

    CAS  Google Scholar 

  • Sanyal S, Marckmann P, Scherer S, Abraham JL (2011) Multiorgan gadolinium (Gd) deposition and fibrosis in a patient with nephrogenic systemic fibrosis—an autopsy-based review. Nephrol Dial Transplant 26:3616–3626

    CAS  PubMed  Google Scholar 

  • Sarka L, Burai L, Brücher E (2000) The rates of the exchange reactions between [Gd(DTPA)]2- and the endogenous ions Cu2+ and Zn2+: a kinetic model for the prediction of the in vivo stability of [Gd(DTPA)]2-, used as a contrast agent in magnetic resonance imaging. Chem Eur J 6:719–724

    CAS  PubMed  Google Scholar 

  • Sarka L, Burai L, Király R, Zékány L, Brücher E (2002) Studies on the kinetic stabilities of the Gd3+ complexes formed with the N-mono(methylamide), N′-mono(methylamide) and N, N″-bis(methylamide) derivatives of diethylenetriamine-N, N, N′, N″, N″-pentaacetic acid. J Inorg Biochem 91:320–326

    CAS  PubMed  Google Scholar 

  • Schmid AI, Chmelík M, Szendroedi J, Krššák M, Brehm A, Moser E, Roden M (2008) Quantitative ATP synthesis in human liver measured by localized 31P spectroscopy using the magnetization transfer experiment. NMR Biomed 21:437–443

    CAS  PubMed  Google Scholar 

  • Schmidt AM, Vianna M, Gerlach M, Brett J, Ryan J, Kao J, Esposito C, Hegarty H, Hurley W, Clauss M (1992) Isolation and characterization of two binding proteins for advanced glycosylation end products from bovine lung which are present on the endothelial cell surface. J Biol Chem 267:14987–14997

    CAS  PubMed  Google Scholar 

  • Schmiedl U, Ogan M, Paajanen H, Marotti M, Crooks LE, Brito AC, Brasch RC (1987) Albumin labeled with Gd–DTPA as an intravascular, blood pool enhancing agent for MR imaging-biodistribution and imaging studies. Radiology 162:205–210

    CAS  PubMed  Google Scholar 

  • Schmiedl U, Maravilla K, Gerlach R, Dowling C (1990) Excretion of gadopentetate dimeglumine in human breast milk. Am J Roentgenol 154:1305–1306

    CAS  Google Scholar 

  • Schmitt-Willich H (2007) Stability of linear and macrocyclic gadolinium based contrast agents. Br J Radiol 80:581–585

    CAS  PubMed  Google Scholar 

  • Schneider DL (1983) ATP-dependent acidification of membrane vesicles isolated from purified rat liver lysosomes. Acidification activity requires phosphate. J Biol Chem 258:1833–1838

    CAS  PubMed  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schnitzer JE (1992) gp60 is an albumin-binding glycoprotein expressed by continuous endothelium involved in albumin transcytosis. Am J Physiol 262:H246–254

    CAS  PubMed  Google Scholar 

  • Schnitzer JE (2001) Caveolae: from basic trafficking mechanisms to targeting transcytosis for tissue-specific drug and gene delivery in vivo. Adv Drug Deliv Rev 49:265–280

    CAS  PubMed  Google Scholar 

  • Schnitzer JE, Bravo J (1993) High affinity binding, endocytosis, and degradation of conformationally modified albumins: potential role of gp30 and gp18 as novel scavenger receptors. J Biol Chem 268:7562–7570

    CAS  PubMed  Google Scholar 

  • Schnitzer JE, Oh P (1992) Antibodies to SPARC inhibit albumin binding to SPARC, gp60, and microvascular endothelium. Am J Physiol Heart 263:H1872–H1879

    CAS  Google Scholar 

  • Schnitzer JE, Oh P (1994) Albondin-mediated capillary permeability to albumin. Differential role of receptors in endothelial transcytosis and endocytosis of native and modified albumins. J Biol Chem 269:6072–6082

    CAS  PubMed  Google Scholar 

  • Schnitzer JE, Carley WW, Palade GE (1988) Specific albumin binding to microvascular endothelium in culture. Am J Physiol 254:H425–H437

    CAS  PubMed  Google Scholar 

  • Schnitzer JE, Sung A, Horvat R, Bravo J (1992) Preferential interaction of albumin-binding proteins, gp30 and gp18, with conformationally modified albumins. Presence in many cells and tissues with a possible role in catabolism. J Biol Chem 267:24544–24553

    CAS  PubMed  Google Scholar 

  • Schnitzer JE, Oh P, Pinney E, Allard J (1994) Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J Cell Biol 127:1217–1232

    CAS  PubMed  Google Scholar 

  • Schnitzer JE, Allard J, Oh P (1995) NEM inhibits transcytosis, endocytosis, and capillary permeability: implication of caveolae fusion in endothelia. Am J Physiol Heart Circ Physiol 268:H48–H55

    CAS  Google Scholar 

  • Schoeffner DJ, Warren DA, Muralidara S, Bruckner JV, Simmons JE (1999) Organ weights and fat volume in rats as a function of strain and age. J Toxicol Environ Health A 56:449–462

    CAS  PubMed  Google Scholar 

  • Schroeder JA, Weingart C, Coras B, Hausser I, Reinhold S, Mack M, Seybold V, Vogt T, Banas B, Hofstaedter F, Krämer BK (2008) Ultrastructural evidence of dermal gadolinium deposits in a patient with nephrogenic systemic fibrosis and end-stage renal disease. Clin J Am Soc Nephrol 3:968–975

    PubMed  PubMed Central  Google Scholar 

  • Schwartz AL, Strous GJAM, Slot JW, Geuze HJ (1985) Immunoelectron microscopic localization of acidic intracellular compartments in hepatoma cells. Eur Mol Biol Organ J 4:899–904

    CAS  Google Scholar 

  • Šebestík V, Brabec V (1974) Red cell, plasma and whole blood volumes in organs of normal and hypersplenic rats. Blut 29:203–209

    PubMed  Google Scholar 

  • Semelka RC, Ramalho M, AlObaidy M, Ramalho J (2016) Gadolinium in humans: a family of disorders. Am J Roentgenol 207:229–233

    Google Scholar 

  • Shellock FG, Kanal E (1999) Safety of magnetic resonance imaging contrast agents. J Magn Reson Imaging 10:477–484

    CAS  PubMed  Google Scholar 

  • Shen D, Wang X, Li X, Zhang X, Yao Z, Dibble S, Dong XP, Yu T, Lieberman AP, Showalter HD, Xu H (2012) Lipid storage disorders block lysosomal trafficking by inhibiting a TRP channel and lysosomal calcium release. Nat Commun 3:731

    PubMed  PubMed Central  Google Scholar 

  • Sherry AD, Caravan P, Lenkinski RE (2009) A primer on gadolinium chemistry. J Magn Reson Imaging 30:1240–1248

    PubMed  PubMed Central  Google Scholar 

  • Shibamoto T, Tsutsumi M, Ohmukai C, Kuda Y, Zhang W, Kurata Y (2011) Ethanol predominantly constricts pre-sinusoids of isolated perfused livers of rat, guinea pig and mouse. Alcohol Alcohol 46:117–122

    CAS  PubMed  Google Scholar 

  • Sieber MA, Lengsfeld P, Frenzel T, Golfier S, Schmitt-Willich H, Siegmund F, Walter J, Weinmann H-J, Pietsch H (2008) Preclinical investigation to compare different gadolinium-based contrast agents regarding their propensity to release gadolinium in vivo and to trigger nephrogenic systemic fibrosis-like lesions. Eur Radiol 18:2164–2173

    PubMed  Google Scholar 

  • Sivasubramanian M, Hsia Y, Lo LW (2014) Nanoparticle-facilitated functional and molecular imaging for the early detection of cancer. Front Mol Biosci 1:15

    PubMed  PubMed Central  Google Scholar 

  • Smallwood RA, McIlveen B, Rosenoer VM, Sherlock S (1971) Copper kinetics in liver disease. Gut 12:139–144

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sölder E, Kremser C, Rohr I, Hutzler P, Debbage P (2009) Molecular mapping deep within a living human organ: analysis of microvessel function on the timescale of seconds and with sub-micrometre spatial resolution. Histochem Cell Biol 131:537–551

    PubMed  Google Scholar 

  • Sorin A, Favre-Réguillon A, Pellet-Rostaing S, Sbaї M, Szymczyk A, Fievet P, Lemaire M (2005) Rejection of Gd(III) by nanofiltration assisted by complexation on charged organic membrane: influences of pH, pressure, flux, ionic strength and temperature. J Membr Sci 267:41–49

    CAS  Google Scholar 

  • Spencer AJ, Wilson SA, Batchelor J, Reid A, Rees J, Harpur E (1997) Gadolinium chloride toxicity in the rat. Toxicol Pathol 25:245–255

    CAS  PubMed  Google Scholar 

  • Stojanov DA, Aracki-Trenkic A, Vojinovic S, Benedeto-Stojanov D, Ljubisavljevic S (2016) Increasing signal intensity within the dentate nucleus and globus pallidus on unenhanced T1W magnetic resonance images in patients with relapsing-remitting multiple sclerosis: correlation with cumulative dose of a macrocyclic gadolinium-based contrast agent, gadobutrol. Eur Radiol 26:807–815

    PubMed  Google Scholar 

  • Stollenwerk MM, Pashkunova-Martic I, Kremser C, Talasz H, Thurner GC, Abdelmoez AA, Wallnöfer EA, Helbok A, Neuhauser E, Klammsteiner N, Klimaschewski L, von Guggenberg E, Fröhlich E, Keppler B, Jaschke W, Debbage P (2010) Albumin-based nanoparticles as magnetic resonance contrast agents: I. Concept, first syntheses and characterisation. Histochem Cell Biol 133:375–404

    CAS  PubMed  Google Scholar 

  • Stremmel W, Potter BJ, Berk PD (1983) Studies of albumin binding to rat liver plasma membranes. Implications for the albumin receptor hypothesis. Biochim Biophys Acta 756:20–27

    CAS  PubMed  Google Scholar 

  • Swann HG (1960) The functional distension of the kidney: a review. Tex Rep Biol Med 18:566–595

    CAS  PubMed  Google Scholar 

  • Tamura Y, Adachi H, Osuga J, Ohashi K, Yahagi N, Sekiya M, Okazaki H, Tomita S, Iizuka Y, Shimano H, Nagai R, Kimura S, Tsujimoto M, Ishibashi S (2003) FEEL-1 and FEEL-2 are endocytic receptors for advanced glycation end products. J Biol Chem 278:12613–12617

    CAS  PubMed  Google Scholar 

  • Telgmann L, Wehe CA, Künnemeyer J, Bülter AC, Sperling M, Karst U (2012) Speciation of Gd-based MRI contrast agents and potential products of transmetalation with iron ions or parenteral iron supplements. Anal Bioanal Chem 404:2133–2141

    CAS  PubMed  Google Scholar 

  • Thakral C, Alhariri J, Abraham JL (2007) Long-term retention of gadolinium in tissues from nephrogenic systemic fibrosis patient after multiple gadolinium-enhanced MRI scans: case report and implications. Contrast Media Mol Imaging 2:199–205

    CAS  PubMed  Google Scholar 

  • Thoma WJ, Uğurbil K (1987) Saturation-transfer studies of ATP-Pi exchange in isolated perfused rat liver. Biochim Biophys Acta 893:225–231

    CAS  PubMed  Google Scholar 

  • Thomas MR, O’Shea EK (2005) An intracellular phosphate buffer filters transient fluctuations in extracellular phosphate levels. Proc Natl Acad Sci USA 102:9565–9570

    CAS  PubMed  Google Scholar 

  • Thorstensen K, Romslo I (1995) The interaction of gadolinium complexes with isolated rat hepatocytes. Biometals 8:65–69

    CAS  PubMed  Google Scholar 

  • Thurner GC, Debbage P (2018) Molecular imaging with nanoparticles: the dwarf actors revisited 10 years later. Histochem Cell Biol 150:733–794

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thurner GC, Chabicovsky M, Abdelmoez A, Debbage P (2015) Targeted drugs and nanomedicine: present and future. Frontiers in medicinal chemistry, 9th edn. Bentham Science Publishers, Sharjah, pp 182–233

    Google Scholar 

  • Ting WW, Stone MS, Madison KC, Kurtz K (2003) Nephrogenic fibrosing dermopathy with systemic involvement. Arch Dermatol 139:903–906

    PubMed  Google Scholar 

  • Tiruppathi C, Finnegan A, Malik AB (1996) Isolation and characterization of a cell surface albumin binding protein from vascular endothelial cells. Proc Natl Acad Sci USA 93:250–254

    CAS  PubMed  Google Scholar 

  • Tiruppathi C, Song W, Bergenfeldt M, Sass P, Malik AB (1997) Gp60 activation mediates albumin transcytosis in endothelial cells by tyrosine kinase-dependent pathway. J Biol Chem 272:25968–25975

    CAS  PubMed  Google Scholar 

  • Toth E, Brucher E, Lazar I, Toth I (1994) Kinetics of formation and dissociation of lanthanide(III)-DOTA complexes. Inorg Chem 33:4070–4076

    CAS  Google Scholar 

  • Tweedle MF (1992) Physicochemical properties of gadoteridol and other magnetic resonance contrast agents. Invest Radiol 27(Suppl 1):2–6

    CAS  Google Scholar 

  • Tweedle MF (2007) “Stability” of gadolinium chelates. Br J Radiol 80:583–584

    CAS  PubMed  Google Scholar 

  • Tweedle MF, Eaton SM, Eckelman WC, Gaughan GT, Hagan JJ, Wedeking PW, Yost FJ (1988) Comparative chemical structure and pharmacokinetics of MRI contrast agents. Invest Radiol 23:S236–S239

    CAS  PubMed  Google Scholar 

  • Tweedle MF, Hagan JJ, Kumar K, Mantha S, Chang CA (1991) Reaction of gadolinium chelates with endogenously available ions. Magn Res Imaging 9:409–415

    CAS  Google Scholar 

  • Urbina JA, Moreno B, Vierkotter S, Oldfield E, Payares G, Sanoja C, Bailey BN, Yan W, Scott DA, Moreno SNJ, Docampo R (1999) Trypanosoma cruzi contains major pyrophosphate stores and its growth in vitro and in vivo is blocked by pyrophosphate analogs. J Biol Chem 274:33609–33615

    CAS  PubMed  Google Scholar 

  • Valentin J (2002) Basic anatomical and physiological data for use in radiological protection: reference values: ICRP publication 89. Ann ICRP 32:1–277

    Google Scholar 

  • Van Wagoner M, Worah D (1993) Gadodiamide injection. First human experience with the nonionic magnetic resonance imaging enhancement agent. Invest Radiol 28:S44–S48

    PubMed  Google Scholar 

  • Vander Elst L, Van Haverbeke Y, Goudemant JF, Müller RN (1994) Stability assessment of gadolinium complexes by P-31 and H-1 relaxometry. Magn Reson Med 31:437–444

    CAS  PubMed  Google Scholar 

  • Vaux DL (2012) Know when your numbers are significant. Nature 492:180–181

    CAS  PubMed  Google Scholar 

  • Velikyan I, Maecke H, Langstrom B (2008) Convenient preparation of 68Ga-based PET-radiopharmaceuticals at room temperature. Bioconjug Chem 19:569–573

    CAS  PubMed  Google Scholar 

  • Villaschi S, Johns L, Cirigliano M, Pietra GG (1986) Binding and uptake of native and glycosylated albumin-gold complexes in perfused rat lungs. Microvasc Res 32:190–199

    CAS  PubMed  Google Scholar 

  • Vitner EB, Platt FM, Futerman AH (2010) Common and uncommon pathogenic cascades in lysosomal storage diseases. J Biol Chem 285:20423–20427

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wadas TJ, Sherman CD, Miner JH, Duncan JR, Anderson CJ (2010) The biodistribution of [153Gd]Gd-labeled magnetic resonance contrast agents in a transgenic mouse model of renal failure differs greatly from control mice. Magn Reson Med 64:1274–1280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner B, Drel V, Gorin Y (2016) Pathophysiology of gadolinium-associated systemic fibrosis. Am J Physiol Renal Physiol 311:1–11

    Google Scholar 

  • Wang X, Jin T, Comblin V, Lopez-Mut A, Merciny E, Desreux JF (1992) A kinetic investigation of the lanthanide DOTA chelates. Stability and rates of formation and of dissociation of a macrocyclic gadolinium(III) polyaza polycarboxylic MRI contrast agent. Inorg Chem 31:1095–1099

    CAS  Google Scholar 

  • Wáng YX, Schroeder J, Siegmund H, Idée JM, Fretellier N, Jestin-Mayer G, Factor C, Deng M, Kang W, Morcos SK (2015) Total gadolinium tissue deposition and skin structural findings following the administration of structurally different gadolinium chelates in healthy and ovariectomized female rats. Quant Imaging Med Surg 5:534–545

    PubMed  PubMed Central  Google Scholar 

  • Wasserman AJ, Monticello TM, Feldman RS, Gitlitz PH, Durham SK (1996) Utilization of electron probe microanalysis in gadolinium-treated mice. Toxicol Pathol 24:588–594

    CAS  PubMed  Google Scholar 

  • Watanabe R, Iino R, Shimabukuro K, Yoshida M, Noji H (2008) Temperature-sensitive reaction intermediate of F1-ATPase. EMBO Rep 9:84–90

    CAS  PubMed  Google Scholar 

  • Watson AD, Rocklage SM (1992) Theory and mechanism of contrast enhancing agents. In: Higgins CB, Hricak H, Helms CA (eds) Magnetic resonance imaging of the body. Raven Press, New York, pp 1257–1287

    Google Scholar 

  • Weberling LD, Kieslich PJ, Kickingereder P, Wick W, Bendszus M, Schlemmer HP, Radbruch A (2015) Increased signal intensity in the dentate nucleus on unenhanced T1-weighted images after gadobenate dimeglumine administration. Invest Radiol 50:743–748

    CAS  PubMed  Google Scholar 

  • Wedeking P, Kumar K, Tweedle MF (1992) Dissociation of gadolinium chelates in mice: relationship to chemical characteristics. Magn Reson Imaging 10:641–648

    CAS  PubMed  Google Scholar 

  • Weinmann HJ, Brasch RC, Press WR, Wesbey GE (1984a) Characteristics of gadolinium-DTPA complex: a potential NMR contrast agent. Am J Roentgenol 142:619–624

    CAS  Google Scholar 

  • Weinmann HJ, Laniado M, Mützel W (1984b) Pharmacokinetics of Gd–DTPA/dimeglumine after intravenous injection into healthy volunteers. Physiol Chem Phys Med NMR 16:167–172

    CAS  PubMed  Google Scholar 

  • Weissleder R, Mahmood U (2001) Molecular imaging. Radiology 219:316–333

    CAS  PubMed  Google Scholar 

  • Wewer UM, Albrechtsen R, Fisher LW, Young MF, Termine JD (1988) Osteonectin/SPARC/BM-40 in human decidua and carcinoma, tissues characterized by de novo formation of basement membrane. Am J Pathol 132:345–355

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wiemken A, Nurse P (1973) Isolation and characterization of the amino-acid pools located within the cytoplasm and vacuoles of Candida utilis. Planta (Berl) 109:293–306

    CAS  Google Scholar 

  • Williams S, Grimm H (2014) Gadolinium toxicity A survey of the chronic effects of retained gadolinium from contrast MRIs: plus updated gadolinium retention information. https://gdtoxicity.files.wordpress.com/2014/09/gd-symptom-survey.pdf. Accessed 09 Aug 2020

  • Wimmer M, Wilmering B, Sasse D (1985) The relation of rat liver wet weight to dry weight. Histochemistry 83:571–572

    CAS  PubMed  Google Scholar 

  • Wisse E (1970) An electron microscopic study of the fenestrated endothelial lining of rat liver sinusoids. J Ultrastruct Res 31:125–150

    CAS  PubMed  Google Scholar 

  • Woodcock J (2004) The concept of pharmaceutical quality. Am Pharm Rev 7:10–15

    Google Scholar 

  • Yang RM, Fu CP, Li NN, Wang L, Xu XD, Yang DY, Fang JZ, Jiang XQ, Zhang LM (2014) Glycosaminoglycan-targeted iron oxide nanoparticles for magnetic resonance imaging of liver carcinoma. Mater Sci Eng C Mater Biol 45:556–563

    CAS  Google Scholar 

  • Yano M, Sakamoto N, Takikawa T, Hayashi H (1993) Intrahepatocellular localization of copper in Wilson’s disease. Nagoya J Med Sci 55:131–137

    CAS  PubMed  Google Scholar 

  • Yedgar S, Carew TE, Pittman RC, Beltz WF, Steinberg D (1983) Tissue sites of catabolism of albumin in rabbits. Am J Physiol 244:E101–E107

    CAS  PubMed  Google Scholar 

  • Yokota S (1983) Immunocytochemical evidence for transendothelial transport of albumin and fibrinogen in rat heart and diaphragm. Biomed Res 4:577–586

    CAS  Google Scholar 

  • Yoneda S, Emi N, Fujita Y, Ohmichi M, Hirano S, Suzuki KT (1995) Effects of gadolinium chloride on the rat lung following intratracheal instillation. Fundam Appl Toxicol 28:65–70

    CAS  PubMed  Google Scholar 

  • Yoshioka T, Yamamoto K, Kobashi H, Tomlta M, Tsuji T (1994) Receptor-mediated endocytosis of chemically modified albumins by sinusoidal endothelial cells and Kupffer cells in rat and human liver. Liver 14:129–137

    CAS  PubMed  Google Scholar 

  • Yu LX, Amidon G, Khan MA, Hoag SW, Polli J, Raju GK, Woodcock J (2014) Understanding pharmaceutical quality by design. AAPS J 16:771–783

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zavaleta C, Ho D, Chung EJ (2018) Theranostic nanoparticles for tracking and monitoring disease state. SLAS Technol 23:281–293

    CAS  PubMed  Google Scholar 

  • Zhang K, Hsu FF, Scott DA, Docampo R, Turk J, Beverley SM (2005) Leishmania salvage and remodelling of host sphingolipids in amastigote survival and acidocalcisome biogenesis. Mol Microbiol 55:1566–1578

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Zheng Y, Mazon H, Milgrom E, Kitagawa N, Kish-Trier E, Heck AJ, Kane PM, Wilkens S (2008) Structure of the yeast vacuolar ATPase. J Biol Chem 283:35983–35995

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Z, Lu ZR (2013) Gadolinium-based contrast agents for magnetic resonance cancer imaging. WIREs Nanomed Nanobiotechnol 5:1–18

    CAS  Google Scholar 

  • Zou P, Yu Y, Wang YA, Zhong Y, Welton A, Galbán C, Wang S, Sun D (2010) Superparamagnetic iron oxide nanotheranostics for targeted cancer cell imaging and pH-dependent intracellular drug release. Mol Pharm 7:1974–1984

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Austrian Nano-Initiative, the Austrian Science Foundation (FWF) (Project N201-NAN), and the Austrian National Bank Jubilee Program supported this work (Projects 9273, 10844, 11574, and 13096).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Debbage.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOC 83 kb)

Supplementary file 2 (DOC 73 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wallnöfer, E.A., Thurner, G.C., Kremser, C. et al. Albumin-based nanoparticles as contrast medium for MRI: vascular imaging, tissue and cell interactions, and pharmacokinetics of second-generation nanoparticles. Histochem Cell Biol 155, 19–73 (2021). https://doi.org/10.1007/s00418-020-01919-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-020-01919-0

Keywords

Navigation