Skip to main content

Advertisement

Log in

Effect of light on the calretinin and calbindin expression in skin club cells of adult zebrafish

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

In the last decade, zebrafish has been used as a model for the study of several human skin diseases. The epidermis of Danio rerio is composed of keratinocytes and two types of secretory cells: mucous cells and club cells. Club cells have multiple biological functions and among them may be important in the protection against ultraviolet damage through the proliferative response or through the increased production of protective substances. Calcium-binding proteins such as calbindin D28K and calretinin are used as markers of nervous and enteric nervous systems, but they are present in numerous other cells. These proteins are involved in a wide variety of cell activities, such as cytoskeletal organization, cell motility and differentiation, cell cycle regulation and neuroprotective function. In this study we demonstrated, for the first time, the presence of calretinin and calbindin D28K in skin club cells of Danio rerio exposed to different wavelengths by immunohistochemistry analysis. Exposure to white-blue light and blue light causes the expression and colocalization of calbindin-D28K and calretinin. These proteins were moderately expressed and no colocalization was observed in the club cells of the control fish. In zebrafish exposed to continuous darkness for 10 days, in the club cells the two antibodies did not detect any proteins specifically. These results demonstrate that calbindin and calretinin could be involved in the pathophysiology of skin injury due to exposure to short-wavelength visible light spectrums.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albanesi C, Madonna S, Gisondi P, Girolomoni G (2018) The interplay between keratinocytes and immune cells in the pathogenesis of psoriasis. Front Immunol 9:1549

    Google Scholar 

  • Al-Hassan J, Thomson M, Criddle K, Summers B, Criddle R (1985) Catfish epidermal secretions in response to threat or injury. Mar Biol 88:117–123

    CAS  Google Scholar 

  • Amato V et al (2012) TRPV4 in the sensory organs of adult zebrafish. MRT 75:89–96

    CAS  Google Scholar 

  • Blazer V, Fabacher D, Little E, Ewing M, Kocan K (1997) Effects of ultraviolet B radiation on fish: histologic comparison of a UVB-sensitive and a UVB-tolerant species. J Aquat 9:132–143

    Google Scholar 

  • Blum W, Pecze L, Rodriguez JW, Steinauer M, Schwaller B (2018) Regulation of calretinin in malignant mesothelioma is mediated by septin 7 binding to the CALB2 promoter. BMC Cancer 18:475

    Google Scholar 

  • Castro A, Becerra M, Manso MJ, Anadón R (2006) Calretinin immunoreactivity in the brain of the zebrafish, Danio rerio: distribution and comparison with some neuropeptides and neurotransmitter-synthesizing enzymes. I. Olfactory organ and forebrain. J Comp Neurol 494:435–459

    CAS  Google Scholar 

  • Castro A, Becerra M, Anadón R, Manso MJ (2008) Distribution of calretinin during development of the olfactory system in the brown trout, Salmo trutta fario: comparison with other immunohistochemical markers. J Chem Neuroanat 35:306–316

    CAS  Google Scholar 

  • Chang WJ, Hwang PP (2011) Development of zebrafish epidermis. Birth Defects Res C Embryo Today 93:205–214

    CAS  Google Scholar 

  • Chivers DP et al (2007) Epidermal ‘alarm substance’ cells of fishes maintained by non-alarm functions: possible defence against pathogens, parasites and UVB radiation. Proc Biol Sci 274:2611–2619

    Google Scholar 

  • Cline A, Feldman SR (2016) Zebrafish for modeling skin disorders. Dermatol Online J 22(8). https://escholarship.org/uc/item/4ws351w8

  • Damasceno EM, Monteiro JC, Duboc LF, Dolder H, Mancini K (2012) Morphology of the epidermis of the Neotropical Catfish Pimelodella lateristriga (Lichtenstein, 1823) with emphasis in club cells. PLoS One 7:e50255

    CAS  Google Scholar 

  • Dei Tos AP, Doglionit C (1998) Calretinin: a novel tool for diagnostic immunohistochemistry. Adv Anat Pathol 5:61

    CAS  Google Scholar 

  • Díaz-Regueira SM, Lamas I, Anadón R (2005) Calretinin immunoreactivity in taste buds and afferent fibers of the grey mullet Chelon labrosus. Brain Res J 1031:297–301

    Google Scholar 

  • Doglioni C, Dei AP, Laurino L, Iuzzolino P, Chiarelli C, Celio MR, Viale G (1996) Calretinin: a novel immunocytochemical marker for mesothelioma. Am J Surg Pathol 20:1037–1046

    CAS  Google Scholar 

  • Germanà A, Catania S, Cavallaro M, González Martínez T, Ciriaco E, Hannestad J, Vega J (2002) Immunohistochemical localization of BDNF, TrkB and TrkA like proteins in the teleost lateral line system. J Anat 200:477–485

    Google Scholar 

  • Germanà A, Paruta S, Germanà GP, Ochoa-Erena FJ, Montalbano G, Cobo J, Vega JA (2007) Differential distribution of S100 protein and calretinin in mechanosensory and chemosensory cells of adult zebrafish (Danio rerio). Brain Res J 1162:48–55

    Google Scholar 

  • Germanà A et al (2010) Expression of brain-derived neurotrophic factor and TrkB in the lateral line system of zebrafish during development. Cell Mol Neurobiol 30:787–793

    Google Scholar 

  • González-Guerra E, Kutzner H, Rutten A, Requena L (2012) Immunohistochemical study of calretinin in normal skin and cutaneous adnexal proliferations. Am J Dermatopathol 34(5):491–505

    Google Scholar 

  • Halbgewachs CF, Marchant TA, Kusch RC, Chivers DP (2009) Epidermal club cells and the innate immune system of minnows. Biol J Linn Soc 98:891–897

    Google Scholar 

  • Henrikson RC, Matoltsy AG (1967a) The fine structure of teleost epidermis: I. Introduction and filament-containing cells. J Ultrastruct Res 21:194–212

    CAS  Google Scholar 

  • Henrikson RC, Matoltsy AG (1967b) The fine structure of teleost epidermis: II. Mucous cells. J Ultrastruct Res 21:213–221

    CAS  Google Scholar 

  • Hof PR, Glezer II, Condé F, Flagg RA, Rubin MB, Nimchinsky EA, Weisenhorn DMV (1999) Cellular distribution of the calcium-binding proteins parvalbumin, calbindin, and calretinin in the neocortex of mammals: phylogenetic and developmental patterns. J Chem Neuroanat 16:77–116

    CAS  Google Scholar 

  • Iger Y, Abraham M (1990) The process of skin healing in experimentally wounded carp. J Fish Biol 36:421–437

    Google Scholar 

  • Iger Y, Lock R, Jenner H, Bonga SW (1994) Cellular responses in the skin of carp (Cyprinus carpio) exposed to copper. Aquat Toxicol 29:49–64

    CAS  Google Scholar 

  • James CT, Wisenden BD, Goater CP (2009) Epidermal club cells do not protect fathead minnows against trematode cercariae: a test of the anti-parasite hypothesis. Biol J Linn Soc Lond 98:884–890

    Google Scholar 

  • Lauriano ER, Pergolizzi S, Capillo G, Kuciel M, Alesci A, Faggio C (2016) Immunohistochemical characterization of Toll-like receptor 2 in gut epithelial cells and macrophages of goldfish Carassius auratus fed with a high-cholesterol diet. Fish Shellfish Immunol 59:250–255

    CAS  Google Scholar 

  • Lauriano ER, Faggio C, Capillo G, Spanò N, Kuciel M, Aragona M, Pergolizzi S (2018) Immunohistochemical characterization of epidermal dendritic-like cells in giant mudskipper, Periophthalmodon schlosseri. Fish Shellfish Immunol 74:380–385

    CAS  Google Scholar 

  • Lauriano ER, Pergolizzi S, Aragona M, Montalbano G, Guerrera MC, Crupi R, Faggio C, Capillo G (2019) Intestinal immunity of dogfish Scyliorhinus canicula spiral valve: a histochemical, immunohistochemical and confocal study. Fish Shellfish Immunol 87:490–498

    CAS  Google Scholar 

  • Levanti MB et al (2008) Calretinin in the peripheral nervous system of the adult zebrafish. J Anat 212:67–71

    CAS  Google Scholar 

  • Levanti M et al (2016) Acid-sensing ion channels and transient-receptor potential ion channels in zebrafish taste buds. Ann Anat 207:32–37

    CAS  Google Scholar 

  • Lévesque M, Feng Y, Jones RA, Martin P (2013) Inflammation drives wound hyperpigmentation in zebrafish by recruiting pigment cells to sites of tissue damage. Dis Model Mech 6:508–515

    Google Scholar 

  • Li Q, Uitto J (2014) Zebrafish as a model system to study skin biology and pathology. J Investig Dermatol 134:e21

    CAS  Google Scholar 

  • Mangini J, Silverman JF, Dabbs DJ, Tung MY, Silverman AR (2000) Diagnostic value of calretinin in mast cell lesions of the skin. Int J Surg Pathol 8:119–122

    Google Scholar 

  • Marino F, Germana A, Bambir S, Helgason S, De Vico G, Macrì B (2007) Calretinin and S100 expression in goldfish, Carassius auratus (L.), schwannoma. J Fish Dis 30:251–253

    CAS  Google Scholar 

  • Martínez-Navarro F, Martínez-Menchón T, Mulero V, Galindo-Villegas J (2019) Models of human psoriasis: zebrafish the newly appointed player. Dev Comp Immunol 97:76–87

    Google Scholar 

  • McFadzen I, Baynes S, Hallam J, Beesley A, Lowe D (2000) Histopathology of the skin of UV-B irradiated sole (Solea solea) and turbot (Scophthalmus maximus) larvae. Mar Environ Res 50:273–277

    CAS  Google Scholar 

  • Montalbano G et al (2016) Morphological differences in adipose tissue and changes in BDNF/Trkb expression in brain and gut of a diet induced obese zebrafish model. Ann Anat 204:36–44

    Google Scholar 

  • Mueller KP, Neuhauss SC (2014) Sunscreen for fish: co-option of UV light protection for camouflage. PLoS ONE 9:e87372

    Google Scholar 

  • Noceda C, Sierra SG, Martínez JL (1997) Histopathology of UV-B irradiated brown trout Salmo trutta skin. Dis Aquat Org 31:103–108

    Google Scholar 

  • Ordóñez NG (1998) Role of immunohistochemistry in distinguishing epithelial peritoneal mesotheliomas from peritoneal and ovarian serous carcinomas. Am J Surg Pathol 22:1203–1214

    Google Scholar 

  • Parisi V, Guerrera MC, Abbate F, Garcia-Suarez O, Viña E, Vega JA, Germanà A (2014) Immunohistochemical characterization of the crypt neurons in the olfactory epithelium of adult zebrafish. Ann Anat 196:178–182

    Google Scholar 

  • Park HS et al (2014) Toll like receptor 2 mediates a cutaneous reaction induced by repetitive ultraviolet B irradiation in C57/BL6 mice in vivo. Exp Dermatol 23:591–595

    CAS  Google Scholar 

  • Pfeiffer W (1977) The distribution of fright reaction and alarm substance cells in fishes. Copeia 4:653–665

    Google Scholar 

  • Poblet E, Jimenez F, De Cabo C, Prieto Martin A, Sánchez Prieto R (2005) The calcium binding protein calretinin is a marker of the companion cell layer of the human hair follicle. Br J Dermatol 152:1316–1320

    CAS  Google Scholar 

  • Rakers S et al (2010) ‘Fish matters’: the relevance of fish skin biology to investigative dermatology. Exp Dermatol 19:313–324

    Google Scholar 

  • Rex M, Salawitch R, von der Gathen P, Harris N, Chipperfield M, Naujokat B (2004) Arctic ozone loss and climate change. Geophys Res Lett 31:1–4

    Google Scholar 

  • Richardson R, Slanchev K, Kraus C, Knyphausen P, Eming S, Hammerschmidt M (2013) Adult zebrafish as a model system for cutaneous wound-healing research. J Investig Dermatol 133:1655–1665

    CAS  Google Scholar 

  • Sánchez Ramos C et al (2013) Light regulates the expression of the BDNF/TrkB system in the adult zebrafish retina. Microsc Res Tech 76:42–49

    Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    CAS  Google Scholar 

  • Schwaller B (2009) The continuing disappearance of “pure” Ca2+ buffers. Cell Mol Life Sci 66:275–300

    CAS  Google Scholar 

  • Sire J-Y, Akimenko M-A (2003) Scale development in fish: a review, with description of sonic hedgehog (shh) expression in the zebrafish (Danio rerio). Int J Dev Biol 48:233–247

    Google Scholar 

  • Slominski A (2009) Neuroendocrine activity of the melanocyte. Exp Dermatol 18:760–763

    Google Scholar 

  • Slominski A, Wortsman J, Tuckey RC, Paus R (2007) Differential expression of HPA axis homolog in the skin. Mol Cell Endocrinol 265:143–149

    Google Scholar 

  • Smith R (1982) The adaptive significance of the alarm substance-fright reaction system. In: Hara TJ (ed) Chemoreception in fishes. Elsevier, Amsterdam, pp 327–342

  • Smith R (1997) Does one result trump all others? A response to Magurran, Irving and Henderson. Proc R Soc B 264:445–450

    Google Scholar 

  • Walters JR, Bishop AE, Facer P, Lawson DEM, Rogers JH, Polak JM (1993) Calretinin and calbindin-D28k immunoreactivity in the human gastrointestinal tract. Gastroenterology 104:1381–1389

    CAS  Google Scholar 

  • Webb AE, Kimelman D (2005) Analysis of early epidermal development in zebrafish. In: Turksen K (ed) Epidermal cells. Methods in molecular biology™, vol 289. Humana Press

  • Wisenden BD, Smith RJF (1997) The effect of physical condition and shoalmate familiarity on proliferation of alarm substance cells in the epidermis of fathead minnows. J Fish Biol 50(4):799–808

    Google Scholar 

  • Zaccone G, Kapoor B, Fasulo S, Ainis L (2001) Structural, histochemical and functional aspects of the epidermis of fishes. Adv Mar Biol 40:253–348

    Google Scholar 

  • Zaccone G, Wendelaar Bonga SE, Flik G, Fasulo S, Licata A, Lo Cascio P, Mauceri A, Lauriano ER (1992) Localization of calbindin D28K-like immunoreactivity in fish gill: a light microscopic and immunoelectron histochemical study. Regul Pept 41(3):195–208

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ERL and MCG: carried out the project of the study, the data analysis/interpretation and the drafting of the manuscript. RL and FA: provided guidance and assisted with data analysis/interpretation; SP, GC and MA: participated in data collection, analysis and visualization, statistical analyses and graphical elaborations; also, were responsible for formatting all figures. AG: critical revision of the manuscript and approval of the article.

Corresponding author

Correspondence to M. C. Guerrera.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4339 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lauriano, E.R., Guerrera, M.C., Laurà, R. et al. Effect of light on the calretinin and calbindin expression in skin club cells of adult zebrafish. Histochem Cell Biol 154, 495–505 (2020). https://doi.org/10.1007/s00418-020-01883-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-020-01883-9

Keywords

Navigation