Skip to main content

Advertisement

Log in

Tuftelin and HIFs expression in osteogenesis

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Tuftelin was originally discovered and mostly studied in the tooth, but later found also in other organs. Despite its wide distribution among tissues, tuftelin’s function has so far been specified only in the formation of enamel crystals. Nevertheless, in many cases, tuftelin was suggested to be associated with cellular adaptation to hypoxia and recently even with cell differentiation. Therefore, we aimed to investigate tuftelin expression along with hypoxia-inducible factors (HIFs) during the early development of the mandibular/alveolar (m/a) bone, when osteoblasts started to differentiate in vivo and to compare their expression levels in undifferentiated versus differentiated osteoblastic cells in vitro. Immunohistochemistry demonstrated the presence of tuftelin already in osteoblastic precursors which were also HIF1-positive, but HIF2-negative. Nevertheless, HIF2 protein appeared when osteoblasts differentiated, one day later. This is in agreement with observations made with MC3T3-E1 cells, where there was no significant difference in tuftelin and Hif1 expression in undifferentiated vs. differentiated cells, although Hif2 increased upon differentiation induction. In differentiated osteoblasts of the m/a bone, all three proteins accumulated, first, prenatally, in the cytoplasm and later, particularly at postnatal stages, they displayed also peri/nuclear localization. Such a dynamic time–space pattern of tuftelin expression has recently been reported in neurons, which, as the m/a bone, differentiate under less hypoxic conditions as indicated also by a prevalent cytoplasmic expression of HIF1 in osteoblasts. However, unlike what was shown in cultured neurons, tuftelin does not seem to participate in final osteoblastic differentiation and its functions, thus, appears to be tissue specific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alfaqeeh SA, Gaete M, Tucker AS (2013) Interactions of the tooth and bone during development. J Dent Res 92:1129–1135. https://doi.org/10.1177/0022034513510321

    Article  CAS  PubMed  Google Scholar 

  • Amarilio R, Viukov SV, Sharir A, Eshkar-Oren I, Johnson RS, Zelzer E (2007) HIF1alpha regulation of Sox9 is necessary to maintain differentiation of hypoxic prechondrogenic cells during early skeletogenesis. Dev Camb Engl 134:3917–3928

    CAS  Google Scholar 

  • Araldi E, Schipani E (2010) Hypoxia, HIFs and bone development. Bone 47:190–196

    Article  CAS  Google Scholar 

  • Bashir MM, Abrams WR, Tucker T, Sellinger B, Budarf M, Emanuel B, Rosenbloom J (1998) Molecular cloning and characterization of the bovine and human tuftelin genes. Connect Tissue Res 39:13–24

    Article  CAS  Google Scholar 

  • Berra E, Roux D, Richard DE, Pouysségur J (2001) Hypoxia-inducible factor-1 alpha (HIF-1 alpha) escapes O(2)-driven proteasomal degradation irrespective of its subcellular localization: nucleus or cytoplasm. EMBO Rep 2(7):615–620. https://doi.org/10.1093/embo-reports/kve130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campos-Navarro PM, Guerrero-Barrera AL, Avelar-González FJ, Navarro-Rincón-Gallardo ME, Mariel-Murga H, Mareil-Cárdenas J, Gutiérrez-Cantú FJ (2017) Expression of tuftelin in human dental germs. Int J Morphol 35(1):293–298

    Article  Google Scholar 

  • Chen EY, Fujinaga M, Giaccia AJ (1999) Hypoxic microenvironment within an embryo induces apoptosis and is essential for proper morphological development. Teratology 60:215–225

    Article  CAS  Google Scholar 

  • Chua YL, Dufour E, Dassa EP, Rustin P, Jacobs HT, Taylor CT, Hagen T (2010) Stabilization of hypoxia-inducible factor-1alpha protein in hypoxia occurs independently of mitochondrial reactive oxygen species production. J Biol Chem 285(41):31277–31284. https://doi.org/10.1074/jbc.M110.158485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czekanska EM, Stoddart MJ, Richards RG, Hayes JS (2012) In search of an osteoblast cell model for in vitro research. Eur Cell Mater 9(24):1–17

    Google Scholar 

  • De Spiegelaere W, Cornillie P, Casteleyn C, Burvenich C, Van den Broeck W (2010) Detection of hypoxia inducible factors and angiogenic growth factors during foetal endochondral and intramembranous ossification. Anat Histol Embryol 2010(39):376–384

    Article  Google Scholar 

  • Delgado S, Deutsch D, Sire JY (2017) Evolutionary analysis of the mammalian tuftelin sequence reveals features of functional importance. J Mol Evol 84:214–224. https://doi.org/10.1007/s00239-017-9789-5

    Article  CAS  PubMed  Google Scholar 

  • Deutsch D, Palmon A, Fisher LW, Kolodny N, Termine JD, Young MF (1991) Sequencing of bovine enamelin (“tuftelin”) a novel acidic enamel protein. J Biol Chem 266:16021–16028

    CAS  PubMed  Google Scholar 

  • Deutsch D, Leiser Y, Shay B, Fermon E, Taylor A, Rosenfeld E, Dafni L, Charuvi K, Cohen Y, Haze A et al (2002) The human tuftelin gene and the expression of tuftelin in mineralizing and nonmineralizing tissues. Connect Tissue Res 43:425–434

    Article  CAS  Google Scholar 

  • Deutsch D, Silverstein N, Shilo D, Lecht S, Lazarovici P, Blumenfeld A (2011) Biphasic influence of hypoxia on tuftelin expression in mouse mesenchymal C3H10T1/2 stem cells. Eur J Oral Sci 119:55–61. https://doi.org/10.1111/j.1600-0722.2011.00861.x

    Article  PubMed  Google Scholar 

  • Diekwisch TG, Ware J, Fincham AG, Zeichner-David M (1997) Immunohistochemical similarities and differences between amelogenin and tuftelin gene products during tooth development. J Histochem Cytochem 45(6):859–866

    Article  CAS  Google Scholar 

  • Diep L, Matalova E, Mitsiadis TA, Tucker AS (2009) Contribution of the tooth bud mesenchyme to alveolar bone. J Exp Zool B Mol Dev Evol 312B(5):510–517

    Article  Google Scholar 

  • Dou C, Zhou Z, Xu Q, Liu Z, Zeng Y, Wang Y, Li Q, Wang L, Yang W, Liu Q, Tu K (2019) Hypoxia-induced TUFT1 promotes the growth and metastasis of hepatocellular carcinoma by activating the Ca2 +/PI3K/AKT pathway. Oncogene 38:1239–1255

    Article  CAS  Google Scholar 

  • Filipowska J, Tomaszewski KA, Niedźwiedzki Ł, Walocha JA, Niedźwiedzki T (2017) The role of vasculature in bone development, regeneration and proper systemic functioning. Angiogenesis 20(3):291–302. https://doi.org/10.1007/s10456-017-9541-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giaccia AJ, Simon MC, Johnson R (2004) The biology of hypoxia: the role of oxygen sensing in development, normal function, and disease. Genes Dev 18:2183–2194

    Article  CAS  Google Scholar 

  • Hu XP, Song TZ, Zhu YY, Wu LL, Thang X, Zhou JY, Li ZG (2019) Association of ENAM, TUFT1, MMP13, IL1B, IL10 and IL1RN gene polymorphism and dental caries susceptibility in Chinese children. J Int Med Res 47(4):1696–1704

    Article  CAS  Google Scholar 

  • Jeremias F, Koruyucu M, Küchler EC (2013) Genes expressed in dental enamel development are associated with molar-incisor hypomineralization. Arch Oral Biol 2013(58):1434–1442

    Article  Google Scholar 

  • Kawasaki N, Isogaya K, Dan S, Yamori T, Takano H, Yao R, Morishita Y, Taguchi L, Morikawa M, Heldin CH, Noda T, Ehata S, Miyazono K, Koinuma D (2018) TUFT1 interacts with RABGAP1 and regulates mTORC1 signaling. Cell Discov 4(1):1

    Article  CAS  Google Scholar 

  • Leiser Y, Blumenfeld A, Haze A, Dafni L, Taylor AL, Rosenfeld E, Fermon E, Gruenbaum-Cohen Y, Shay B, Deutsch D (2007) Localization, quantification, and characterization of tuftelin in soft tissues. Anat Rec Adv Integr Anat Evol Biol 290:449–454

    Article  Google Scholar 

  • Leiser Y, Silverstein N, Blumenfeld A, Shilo D, Haze A, Rosenfeld E, Shay B, Tabakman R, Lecht S, Lazarovici P et al (2011) The induction of tuftelin expression in PC12 cell line during hypoxia and NGF-induced differentiation. J Cell Physiol 226:165–172

    Article  CAS  Google Scholar 

  • Liu H, Zhu J, Mao Z, Zhang G, Hu X, Chen F (2018) Tuft1 promotes thyroid carcinoma cell invasion and proliferation and suppresses apoptosis through the Akt-mTOR/GSK3β signaling pathway. Am J Transl Res 10(12):4376–4384

    PubMed  PubMed Central  Google Scholar 

  • Luo W, Wen X, Wang HJ, MacDougall M, Snead ML, Paine ML (2004) In vivo overexpression of tuftelin in the enamel organic matrix. Cells Tissues Organs 177(4):212–220

    Article  CAS  Google Scholar 

  • MacDougall M, Simmons D, Dodds A, Knight C, Luan X, Zeichner-David M, Zhang C, Ryu OH, Qian Q, Simmer JP et al (1998) Cloning, characterization, and tissue expression pattern of mouse tuftelin cDNA. J Dent Res 77:1970–1978

    Article  CAS  Google Scholar 

  • Mao Z, Shay B, Hekmati M, Fermon E, Taylor A, Dafni L, Heikinheimo K, Lustmann J, Fisher LW, Young MF et al (2001) The human tuftelin gene: cloning and characterization. Gene 279:181–196

    Article  CAS  Google Scholar 

  • McGonnell M, Grigoriadis AE, Lam EW, Price JS, Sunters A (2012) A specific role for phosphoinositide 3-kinase and AKT in osteoblasts? Front Endocrinol 20:3–88

    Google Scholar 

  • Merceron C, Ranganathan K, Wang E, Tata Z, Makkapati S, Khan MP, Mangiavini L, Yao AQ, Castellini L, Levi B, Giaccia AJ, Schipani E (2019) Hypoxia-inducible factor 2α is a negative regulator of osteoblastogenesis and bone mass accrual. Bone Res 7:7

    Article  Google Scholar 

  • Minarikova M, Oralova V, Vesela B, Radlanski RJ, Matalova E (2015) Osteogenic profile of mesenchymal cell populations contributing to alveolar bone formation. Cells Tissues Organs 200:339–348

    Article  Google Scholar 

  • Paine CT, Paine ML, Luo W, Okamoto CT, Lyngstadaas SP, Snead ML (2000) A tuftelin-interacting protein (TIP39) localizes to the apical secretory pole of mouse ameloblasts. J Biol Chem 275(29):22284–22292

    Article  CAS  Google Scholar 

  • Pangou E, Befani C, Mylonis I, Samiotaki M, Panayotou G, Simos G, Liakos P (2016) HIF-2α phosphorylation by CK1δ promotes erythropoietin secretion in liver cancer cells under hypoxia. J Cell Sci 129(22):4213–4226. https://doi.org/10.1242/jcs.191395

    Article  CAS  PubMed  Google Scholar 

  • Provot S, Schipani E (2007) Fetal growth plate: a developmental model of cellular adaptation to hypoxia. Ann N Y Acad Sci 1117:26–39

    Article  CAS  Google Scholar 

  • Provot S, Zinyk D, Gunes Y, Kathri R, Le Q, Kronenberg HM, Johnson RS, Longaker MT, Giaccia AJ, Schipani E (2007) Hif-1alpha regulates differentiation of limb bud mesenchyme and joint development. J Cell Biol 177:451–464

    Article  CAS  Google Scholar 

  • Quarles LD, Yohay DA, Lever LW, Caton R, Wenstrup RJ (1992) Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: an in vitro model of osteoblast development. J Bone Miner Res 7:683–692

    Article  CAS  Google Scholar 

  • Santo ARE, Line SRP (2015) The enamel organic matrix: structure and function. Braz J Oral Sci 4:716–724

    Google Scholar 

  • Satchell PG, Shuler CF, Diekwisch TG (2000) True enamel covering in teeth of the Australian lungfish Neoceratodus forsteri. Cell Tissue Res 299:27–37

    Article  CAS  Google Scholar 

  • Shilo D, Blumenfeld A, Haze A, Sharon S, Goren K, Hanhan S, Gruenbaum-Cohen Y, Ornoy A, Deutsch D (2019a) Tuftelin’s involvement in embryonic development. JEZ-B 332:125–135. https://doi.org/10.1002/jezb.22855

    Article  CAS  Google Scholar 

  • Shilo D, Cohen G, Blumenfeld A, Goren K, Hanhan S, Sharon S, Haze A, Deutsch D, Lazarovici P (2019b) Tuftelin is required for NGF-induced differentiation of PC12 cells. J Mol Neurosci 68(1):135–143

    Article  CAS  Google Scholar 

  • Shimizu E, Jong G, Patridge N, Rosenberg PA, Lin LM (2012) Histologic observation of a human immature permanent tooth with irreversible pulpitis after revascularization/regeneration procedure. J Endod 38(9):1293–1297

    Article  Google Scholar 

  • Sliz E, Taipale M, Welling M, Skarp S, Alaraudanjoki V, Ignatius J, Ruddock L, Nissi R, Männikkö M (2017) TUFT1, a novel candidate gene for metatarsophalangeal osteoarthritis, plays a role in chondrogenesis on a calcium-related pathway. PLoS One 12:e0175474

    Article  Google Scholar 

  • Sovik JB, Vieira AR, Tveit AB, Mulic A (2015) Enamel formation genes associated with dental erosive wear. Caries Res 49(3):236–242

    Article  CAS  Google Scholar 

  • Suzuki N, Gradin K, Poellinger L, Yamamoto M (2017) Regulation of hypoxia-inducible gene expression after HIF activation. Exp Cell Res 2017(356):182–186. https://doi.org/10.1016/j.yexcr.2017.03.013

    Article  CAS  Google Scholar 

  • Vesela B, Svandova E, Bobek J, Lesot H, Matalova E (2019) Osteogenic and angiogenic profiles of mandibular bone-forming cells. Front Physiol 10:124. https://doi.org/10.3389/fphys.2019.00124

    Article  PubMed  PubMed Central  Google Scholar 

  • Wan C, Shao J, Gilbert SR, Riddle RC, Long F, Johnson RS, Schipani E, Clemens TL (2010) Role of HIF-1alpha in skeletal development. Ann N Y Acad Sci 1192:322–326

    Article  CAS  Google Scholar 

  • Wang DW, Wu L, Cao Y, Yang L, Liu W, Xiao-Qiang E, Ji G, Bi ZG (2017) A novel mechanism of mTORC1-mediated serine/glycine metabolism in osteosarcoma development. Cell Signal 29:107–114

    Article  CAS  Google Scholar 

  • Yu Y, He J, Li P, Qiu N, Wang L, Feng H (2018) TUFT1 promotes osteosarcoma cell proliferation and predicts poor prognosis in osteosarcoma patients. Open Life Sci 13(1):396–403. https://doi.org/10.1515/biol-2018-0048

    Article  CAS  Google Scholar 

  • Zeichner-David M, Diekwisch T, Fincham A, Lau E, MacDougall M, Moradian-Oldak J, Simmer J, Snead M, Slavkin HC (1995) Control of ameloblast differentiation. Int J Dev Biol 39:69–92

    CAS  PubMed  Google Scholar 

  • Zhou B, Zhan H, Tin L, Liu S, Xu J, Dong Y, Li X, Wu L, Guo W (2016) TUFT1 regulates metastasis of pancreatic cancer through HIF1-Snail pathway induced epithelial-mesenchymal transition. Cancer Lett 382:11–20

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Grant Agency of the Czech Republic (17-14886S).

Author information

Authors and Affiliations

Authors

Contributions

J. B. samples, analysis (immunohistochemistry), evaluation of results, contribution to manuscript preparation; V. O. samples, analysis (qPCR/bones, immunofluorescence), evaluation of results, contribution to manuscript preparation; A. K. analysis (qPCR/MC3T3-E1 cells); I. Z. preliminary data; H. L. critical review and contribution to manuscript preparation; E. M. head of the project.

Corresponding author

Correspondence to Eva Matalova.

Ethics declarations

Conflict of interest

The authors declare they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

418_2019_1813_MOESM1_ESM.tif

Supplementary material 1 (TIFF 71 kb). qPCR of Glut1 and Pdk1 in the intramembranous/alveolar bone at E13, E14, E15. Glut1 expression in the forming intramembranous alveolar/mandibular bone at E13, E14, E15, and in the undifferentiated/differentiated MC3T3 cells (a). Pdk1 expression at E13, E14, E15 in the intramembranous alveolar/mandibular bone (b). The results are representative of three independent experiments

418_2019_1813_MOESM2_ESM.tif

Supplementary material 2 (TIFF 109 kb). qPCR of Hif1, Hif2, Glut1 and Pdk1 during differentiation of MC3T3-E1 cells. Intervals of 3, 10 and 21 days of cultivation, expression of Hif1 (a), Hif2 (b), Glut1 (c), Pdk1 (d). Statistically significant differences are highlighted (ANOVA, *p < 0.01; **p < 0.0001). The results are representative of three independent experiments

418_2019_1813_MOESM3_ESM.tif

Supplementary material 3 (TIFF 24 kb). qPCR of tuftelin during differentiation of MC3T3-E1 cells. Intervals of 3, 10 and 21 days of cultivation. The results are representative of three independent experiments

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobek, J., Oralova, V., Kratochvilova, A. et al. Tuftelin and HIFs expression in osteogenesis. Histochem Cell Biol 152, 355–363 (2019). https://doi.org/10.1007/s00418-019-01813-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-019-01813-4

Keywords

Navigation