Wound healing mechanism in Mongolian gerbil skin

Abstract

The skin wound healing ability of animals differs depending on the environment. The gerbil wound model showed a different wound healing mechanism than was known thus far. Many other wound healing mechanisms have been found to involve transforming growth factor-beta 1 (TGF-β1). However, in the wound healing of gerbil skin, the expression of TGF-β1 seems to be not enough compared to mouse. In this study, we compared the wound healing process of gerbil and mouse back skin. At 3 days after wounding, the TGF-β1 level was downregulated in gerbil skin wound healing compared mouse. In addition, gerbils have fewer integrin signals related to the regulation of TGF-β activation and signaling. Despite lacking these factors, the wound healing results in the gerbil are similar to those for skin wound healing in mice. In contrast, in gerbil skin wound healing, the basal skin layer showed hyperplasia in re-epithelialization, more production of hair follicles, and low probability of collagen infiltration at the late stages of wound healing. These data suggest that different wound healing mechanisms are present in the mammals.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abbas L, Rivolta MN (2015) Aminoglycoside ototoxicity and hair cell ablation in the adult gerbil: a simple model to study hair cell loss and regeneration. Hear Res 325:12–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aluwihare P, Mu Z, Zhao Z, Yu D, Weinreb PH, Horan GS et al (2009) Mice that lack activity of αvβ6- and αvβ8-integrins reproduce the abnormalities of Tgfb1- and Tgfb3-null mice. J Cell Sci 122:227–232

    Article  CAS  PubMed  Google Scholar 

  3. Anders S, Pyl PT, Huber W (2015) HTSeq-A Python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169

    Article  CAS  Google Scholar 

  4. Banh A, Deschamps PA, Gauldie J, Overbeek PA, Sivak JG, West-Mays JA (2006) Lens specific expression of TGF-beta induces anterior subcapsular cataract formation in the absence of Smad3. Invest Ophthalmol Vis Sci 47:3450–3460

    Article  PubMed  PubMed Central  Google Scholar 

  5. Beckett AC, Piazuelo MB, Noto JM, Peek RM Jr, Washington MK, Algood HM et al (2016) Dietary composition influences incidence of helicobacter pylori-induced iron deficiency anemia and gastric ulceration. Infect Immun 84:3338–3349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300

    Google Scholar 

  7. Brown RL, Ormsby I, Doetschman TC, Greenhalgh DG (1995) Wound healing in the transforming growth factor-β1-deficient mouse. Wound Rep Reg 3:25–36

    Article  CAS  Google Scholar 

  8. Chevret P, Denys C, Jaeger JJ, Michaux J, Catzeflis FM (1993) Molecular evidence that the spiny mouse (Acomys) is more closely related to gerbils (Gerbillinae) than to true mice (Murinae). Proc Natl Acad Sci USA 90:3433–3436

    Article  CAS  PubMed  Google Scholar 

  9. Crowe MJ, Doetschman T, Greenhalgh DG (2000) Delayed wound healing in immunodeficient TGF-β1 knockout mice. J Invest Dermatol 115:3–11

    Article  CAS  PubMed  Google Scholar 

  10. Desmoulie`re A, Geinoz A, Gabbiani F, Gabbiani G (1993) Transforming growth factorβ1 induces a-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol 122:103–111

    Article  CAS  Google Scholar 

  11. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21

    Article  CAS  Google Scholar 

  12. Fisher RA (1922) On the interpretation of χ2 from contingency tables, and the calculation of P. J R Stat Soc 85:87–94

    Article  Google Scholar 

  13. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453:314–321

    Article  CAS  PubMed  Google Scholar 

  15. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J et al (2013) De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nat Protoc 8:1494–1512

    Article  CAS  Google Scholar 

  16. Hosoya A, Lee JM, Cho SW, Kim JY, Shinozaki N, Shibahara T et al (2008) Morphological evidence of basal keratinocyte migration during the re-epithelialization process. Histochem Cell Biol 130:1165–1175

    Article  CAS  PubMed  Google Scholar 

  17. Huang X, Madan A (1999) CAP3: A DNA sequence assembly program. Genome Res 9:868–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jansa SA, Weksler M (2004) Phylogeny of muroid rodents: relationships within and among major lineages as determined by IRBP gene sequences. Mol Phylogenet Evol 31:256–276

    Article  CAS  PubMed  Google Scholar 

  19. Lazzari V, Tafforeau P, Michaux J (2011) When homologous cusps display non-homologous wear facets: An occlusal reorganization ensures functional continuity during dental evolution of Murinae (Rodentia, Mammalia). Arch Oral Biol 56:194–204

    Article  PubMed  Google Scholar 

  20. Lee MJ, Byun MR, Furutani-Seiki M, Hong JH, Jung HS (2014) YAP and TAZ regulate skin wound healing. J Invest Dermatol 134:518–525

    Article  CAS  PubMed  Google Scholar 

  21. Lee MJ, Shin JO, Jung HS (2013) Thy-1 knockdown retards wound repair in mouse skin. J Dermatol Sci 69:95–104

    Article  CAS  PubMed  Google Scholar 

  22. Legate KR, Wickström SA, Fässler R (2009) Genetic and cell biological analysis of integrin outside-in signaling. Genes Dev 23:397–418

    Article  CAS  PubMed  Google Scholar 

  23. Letterio JJ, Roberts AB (1996) Transforming growth factor-beta-1-deficient mice: identification of isoform-specific activities in vivo. J Leukoc Biol 59:769–774

    Article  CAS  PubMed  Google Scholar 

  24. Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform 12:323

    Article  CAS  Google Scholar 

  25. Li L, Tang Q, Jung HS (2016a) The grooved rodent incisor recapitulates rudimentary teeth characteristics of ancestral mammals. J Dent Res 95:923–930

    Article  CAS  PubMed  Google Scholar 

  26. Li L, Tang Q, Nakamura T, Suh JG, Ohshima H, Jung HS (2016b) Fine tuning of Rac1 and RhoA alters cuspal shapes by remolding the cellular geometry. Sci Rep 28:1–12

    Google Scholar 

  27. Li L, Tang Q, Kwon HE, Wu Z, Kim EJ, Jung HS (2018) An explanation for how FGFs predict species-specific tooth Cusp patterns. J Dent Res 97:828–834

    Article  CAS  PubMed  Google Scholar 

  28. Majesky MW, Lindner V, Twardzik DR, Schwartz SM, Reidy MA (1991) Production of transforming growth factor beta I during repair of arterial injury. J Clin Invest 88:904–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Margadant C, Sonnenberg A (2010) Integrin-TGF-beta crosstalk in fibrosis, cancer and wound healing. EMBO Rep 11:97–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Martin JA, Wang Z (2011) Next-generation transcriptome assembly. Nat Rev Genet 12:671–682

    Article  CAS  PubMed  Google Scholar 

  31. Pechkovsky DV, Scaffidi AK, Hackett TL, Ballard J, Shaheen F, Thompson PJ et al (2008) TGF-β1 induces αvβ3 integrin expression in human lung fibroblasts via a β3 integrin-, c-Src-, and p38 MAPK-dependent pathway. J Biol Chem 283:12898–12908

    Article  CAS  PubMed  Google Scholar 

  32. Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S et al (2003) TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19:651–652

    Article  CAS  PubMed  Google Scholar 

  33. Peters T, Sindrilaru A, Hinz B, Hinrichs R, Menke A, Al-Azzeh EA et al (2005) Wound healing defect of CD18_/_ mice due to a decrease in TGF-b1 and myofibroblast differentiation. EMBO J 24:3400–3410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Reynolds LE, Conti FJ, Silva R, Robinson SD, Iyer V, Rudling R et al (2008) α3β1 integrin-controlled Smad7 regulates reepithelialization during wound healing in mice. J Clin Invest 118:965–974

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Sabol F, Dancakova L, Gal P, Vasilenko T, Novotny M, Smetana K et al (2012) Immunohistological changes in skin wounds during the early periods of healing in a rat model. Vet Med 2:77–82

    Article  Google Scholar 

  36. Seifert AW, Kiama SG, Seifert MG, Goheen JR, Palmer TM, Maden M (2012) Skin shedding and tissue regeneration in African spiny mice (Acomys). Nature 489:561–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sun J, Nishiyama T, Shimizu K, Kadota K (2013) TCC: an R package for comparing tag count data with robust normalization strategies. Bioinformatics 14:214–219

    Google Scholar 

  38. Tolnai S, Beutelmann R, Klump GM (2017) Effect of preceding stimulation on sound localization and its representation in the auditory midbrain. Eur J Neurosci 45:460–471

    Article  PubMed  Google Scholar 

  39. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ et al (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang XJ, Han G, Owens P, Siddiqui Y, Li AG (2006) Role of TGFb-mediated inflammation in cutaneous wound healing. J Investig Dermatol Symp Proc 11:112–117

    Article  CAS  PubMed  Google Scholar 

  41. Winograd-Katz SE, Fässler R, Geiger B, Legate KR (2014) The integrin adhesome: from genes and proteins to human disease. Nat Rev Mol Cell Biol 15:273–288

    Article  CAS  PubMed  Google Scholar 

  42. Yang Y, Smith SA (2013) Optimizing de novo assembly of short-read RNA-seq data for phylogenomics. BMC Genom 14:328

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by grants from the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP) (NRF-2017M3A9B3061833).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Han-Sung Jung.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, M., Lee, D. & Jung, H. Wound healing mechanism in Mongolian gerbil skin. Histochem Cell Biol 151, 229–238 (2019). https://doi.org/10.1007/s00418-018-1752-z

Download citation

Keywords

  • Gerbil
  • Mouse
  • Skin wound
  • TGF-β1
  • Integrin