Skip to main content

Advertisement

Log in

The role of autophagy in morphogenesis and stem cell maintenance

  • Review
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

During embryonic development, cells need to undergo a number of morphological changes that are decisive for the shaping of the embryo’s body, initiating organogenesis and differentiation into functional tissues. These remodeling processes are accompanied by profound changes in the cell membrane, the cytoskeleton, organelles, and extracellular matrix composition. While considerably detailed insight into the role of autophagy in stem cells biology has been gained in the recent years, information regarding the participation of autophagy in morphogenetic processes is only sparse. This review, therefore, focuses on the role of autophagy in cell morphogenesis through its regulatory activity in TGFβ signaling, expression of adhesion molecules and cell cycle modification. It also discusses the role of autophagy in stem cell maintenance which is very fundamental for cell renewal and replacement during development, pathogenesis of certain diseases and development of therapies. We are thus addressing here perspectives for further potentially rewarding research topics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • An JH, Blackwell TK (2003) SKN-1 links C. elegans mesendodermal specification to a conserved oxidative stress response. Genes Dev 17(15):1882–1893

    CAS  PubMed  PubMed Central  Google Scholar 

  • Armstrong L, Tilgner K, Saretzki G, Atkinson SP, Stojkovic M, Moreno R, Przyborski S, Lako M (2010) Human induced pluripotent stem cell lines show stress defense mechanisms and mitochondrial regulation similar to those of human embryonic stem Cells. Stem Cells 28(4):661–673

    CAS  PubMed  Google Scholar 

  • Bandhyopadhyay U, Cuervo AM (2007) Chaperone-mediated autophagy in aging and neurodegeneration: lessons from α-synuclein. Exp Gerontol 42(1–2):120–128

    CAS  PubMed  Google Scholar 

  • Bhutia SK, Mukhopadhyay S, Sinha N, Sinha N, Das DN, Panda PK, Petra SK, Maiti TK, Mandal M, Dent P, Wang X, Das KS, Sarkar D, Fisher PB (2013) Autophagy: cancer’s friend or foe? Adv Cancer Res 118:61–95

    CAS  PubMed  PubMed Central  Google Scholar 

  • Birchmeier C, Birchmeier W, Brand-Saberi B (1996) Epithelial-mesenchymal transitions in cancer progression. Cells Tissues Organs 156(3):217–226

    CAS  Google Scholar 

  • Boehlke C, Kotsis F, Patel V, Braeg S, Voelker H, Bredt S, Beyer T, Janusch H, Hamman C, Gödel M, Müller K, Herbst M, Hornung M, Doerken M, Köttgen M, Nitschke R, Igarashi P, Walz G, Kuehn WE (2010) Primary cilia regulate mTORC1 activity and cell size through Lkb1. Nat Cell Biol 12(11):1115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boland B, Yu WH, Corti O, Mollereau B, Henriques A, Bezard E, Pastores GM, Rubicztein DC, Nixton RA, Duchen MR, Mallucci GR, Kroemer G, Levine B, Eskelinen E, Mochel F, Spedding M, Louis C, Martin OR, Millan MR (2018) Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing. Nat Rev Drug Discov 17(9):660

    CAS  PubMed  Google Scholar 

  • Bradley JM, Spaletra P, Li Z, Sharp TE 3rd, Goodchild TT, Corral LG, Fung L, Chan KWH, Sullivan RW, Swindlehurst CA, Lefer DJ (2018) A novel fibroblast activation inhibitor attenuates left ventricular remodeling and preserves cardiac function in heart failure. Am J Physiol Heart Circ Physiol 315:H563–H570

    CAS  PubMed  Google Scholar 

  • Cano A, Pérez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA (2000) The transcription factor snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2(2):76

    CAS  PubMed  Google Scholar 

  • Carloni S, Buonocore G, Balduini W (2008) Protective role of autophagy in neonatal hypoxia—ischemia induced brain injury. Neurobiol Dis 32(3):329–339

    CAS  PubMed  Google Scholar 

  • Chen Y, Klionsky DJ (2011) The regulation of autophagy—unanswered questions. J Cell Sci 124(2):161–170

    CAS  PubMed  Google Scholar 

  • Chen L, Zhao L, Samanta A (2017) STAT3 balances myocyte hypertrophy vis-à-vis autophagy in response to Angiotensin II by modulating the AMPKα/mTOR axis. PloS One, 12(7), e0179835

    PubMed  PubMed Central  Google Scholar 

  • Choi KS (2012) Autophagy and cancer. Exp Mol Med 44(2):109

    CAS  PubMed  PubMed Central  Google Scholar 

  • Concha ML, Adams RJ (1998) Oriented cell divisions and cellular morphogenesis in the zebrafish gastrula and neurula: a time-lapse analysis. Development 125(6):983–994

    CAS  PubMed  Google Scholar 

  • Cuervo AM (2006) Autophagy in neurons: it is not all about food. Trends Mol Med 12(10):461–464

    CAS  PubMed  Google Scholar 

  • David CJ, Huang YH, Chen M, Su J, Zou Y, Bardeesy N, Iacobuzio-Donahue CA, Massagué J (2016) TGF-β tumor suppression through a lethal EMT. Cell 25(5):1015–1030

    Google Scholar 

  • De Robertis EM, Gurdon GB (1977) Gene activation in somatic nuclei after injection into amphibian oocytes. Proc Nat Acad Sci USA 74:2470–2474

    PubMed  Google Scholar 

  • De Duve C, Wattiaux R (1966) Functions of lysosomes. Ann Rev Physiol 28(1):435–492

    Google Scholar 

  • De Palma C, Morisi F, Cheli S, Pambianco S, Cappello V, Vezzoli M, Rovere-Querini P, Moggio M, Ripolone M, Francolini M, Sandri M (2012) Autophagy as a new therapeutic target in Duchenne muscular dystrophy. Cell Death Dis 3(11):e418

    PubMed  PubMed Central  Google Scholar 

  • Deng Y, Zhu L, Cai H, Wang G, Liu B (2018) Autophagic compound database: a resource connecting autophagy-modulating compounds, their potential targets and relevant diseases. Cell Prolif 51(3):e12403

    PubMed  Google Scholar 

  • Dolmetsch R, Geschwind DH (2011) The human brain in a dish: the promise of iPSC-derived neurons. Cell 145(6):831–834

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eskelinen EL, Prescott AR, Cooper J, Brachmann M, Wang J, Tang X, Backer JM, Lucocq JM (2002) Inhibition of autophagy in mitotic animal cells. Traffic 3(12):878–893

    CAS  PubMed  Google Scholar 

  • Fiacco E, Castagnetti F, Bianconi V, Madaro L, De Bardi M, Nazio F, D'Amico A, Bertini E, Cecconi F, Puri PL, Latella L (2016) Autophagy regulates satellite cell ability to regenerate normal and dystrophic muscles. Cell Death Differ 23(11):1839

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fulda S, Kogel D (2015) Cell death by autophagy: emerging molecular mechanisms and implications for cancer therapy. Oncogene 34(40):5105–5113

    CAS  PubMed  Google Scholar 

  • García-Prat L, Martínez-Vicente M, Perdiguero E, Ortet L, Rodriguez-Ubreva J, Rebollo E, Ruiz-Bonilla V, Gutarra S, Ballestar E, Serrano AL, Sandri M, Muñoz-Cánoves P (2016) Autophagy maintains stemness by preventing senescence. Nature 529(7584):37

    PubMed  Google Scholar 

  • García-Prat L, Muñoz-Cánoves P, Martínez-Vicente M (2017) Monitoring autophagy in muscle stem cells. In: Muscle stem cells. Humana Press, New York, pp 255–280

    Google Scholar 

  • Gerdes JM, Davis EE, Katsanis N (2009) The vertebrate primary cilium in development, homeostasis, and disease. Cell 137(1):32–45

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glick D, Barth S, Macleod KF (2010) Autophagy: cellular and molecular mechanisms. J Pathol 221(1):3–12

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gorrini C, Harris IS, Mak TW (2013) Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 12(12):931

    CAS  Google Scholar 

  • Grassi G, Di Caprio G, Santangelo L, Fimia GM, Komatsu M, Ippolito G, Tripodi M, Alonzi T (2015) Autophagy regulates hepatocyte identity and epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions promoting Snail degradation. Cell Death Dis 6(9):e1880

    CAS  PubMed  PubMed Central  Google Scholar 

  • Green AS, Chapuis N, Maciel TT, Willems L, Lambert M, Arnoult C, Boyer O, Bardet V, Park S, Foretz M, Viollet B, Ifrah N, Dreyfus F, Hermine O, Moura IC, Lacombe C, Mayeux P, Bouscary D, Tamburini J (2010) The LKB1/AMPK signaling pathway has tumor suppressor activity in acute myeloid leukemia through the repression of mTOR-dependent oncogenic mRNA translation. Blood 116(20):4262–4273

    CAS  PubMed  Google Scholar 

  • Grumati P, Bonaldo P (2012) Autophagy in skeletal muscle homeostasis and in muscular dystrophies. Cells 1(3):325–345

    PubMed  PubMed Central  Google Scholar 

  • Gurdon JB, Uehlinger V (1966) “Fertile” intestine nuclei. Nature 210:1240–1241

    CAS  PubMed  Google Scholar 

  • Gurdon JB, Elsdale TR, Fischberg M (1958) Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature 182:64–65

    CAS  PubMed  Google Scholar 

  • Gurumurthy S, Xie SZ, Alagesan B, Kim J, Yusif RZ, Saez B, Tzatsos A, Ozsolak F, Milos P, Ferrari F, Park JP, Shirihai OS, Scadden DT, Bardeesy N (2010) The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature 468(7324):659

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hart AH, Hartley L, Sourris K, Stadler ES, Li R, Stanley EG, Tam PPL, Elefanty AG, Robb L (2002) Mixl1 is required for axial mesendoderm morphogenesis and patterning in the murine embryo. Development 129(15):3597–3608

    CAS  PubMed  Google Scholar 

  • He MY, Wang G, Han SS, Jin Y, Li H, Wu X Ma Z, Cheng X, Tang X, Liu G (2016) Nrf2 signalling and autophagy are involved in diabetes mellitus-induced defects in the development of mouse placenta. Open Biol 6(7):160064

    PubMed  PubMed Central  Google Scholar 

  • Hou J, Han ZP, Jing YY, Yang X, Zhang SS, Sun K, Hao C, Meng Y, Yu FH, Liu XQ, Shi YF, Wu MC, Zhang L, Wei LX (2013) Autophagy prevents irradiation injury and maintains stemness through decreasing ROS generation in mesenchymal stem cells. Cell Death Dis 4(10):e844

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hurley JH, Young LN (2017) Mechanisms of autophagy initiation. Ann Rev Biochem 86:225–244

    CAS  PubMed  Google Scholar 

  • Hwang DY, Kim DS, Kim DW (2010) Human ES and iPS cells as cell sources for the treatment of Parkinson’s disease: current state and problems. J Cell Biochem 109(2):292–301

    CAS  PubMed  Google Scholar 

  • Ichimura Y, Waguri S, Sou YS, Kageyama S, Hasegawa J, Ishimura R, Saito T, Yang Y, Kouno T, Fukutomi T, Hoshii T, Hirao A, Takagi K, Mizushima T, Motohashi H, Lee MS, Yoshimori T, Tanaka K, Yamamoto M, Masaaki Komatsu M (2013) Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol Cell 51(5):618–631

    CAS  PubMed  Google Scholar 

  • Jang J, Wang Y, Kim HS, Lalli MA, Kosik KS (2014) Nrf2, a regulator of the proteasome, controls self-renewal and pluripotency in human embryonic stem cells. Stem Cells 32(10):2616–2625

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jang J, Wang Y, Lalli MA, Guzman E, Godshalk SE, Zhou H, Kosik KS (2016) Primary cilium-autophagy-Nrf2 (PAN) axis activation commits human embryonic stem cells to a neuroectoderm fate. Cell 165(2):410–420

    CAS  PubMed  Google Scholar 

  • Klionsky DJ (2005) The molecular machinery of autophagy: unanswered questions. J Cell Sci 118(1):7–18

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klionsky DJ, Ohsumi Y (1999) Vacuolar import of proteins and organelles from the cytoplasm. Ann Rev Cell Dev Biol 15(1):1–32

    CAS  Google Scholar 

  • Klionsky DJ, Cregg JM, Dunn WA, Emr SD, Sakai Y, Sandoval IV, Sibirny A, Subramani S, Thumm M, Veenhuis M, Ohsumi Y (2003) A unified nomenclature for yeast autophagy-related genes. Dev Cell 5(4):539–545

    CAS  PubMed  Google Scholar 

  • Klionsky DJ, Cuervo AM, Seglen PO (2007) Methods for monitoring autophagy from yeast to human. Autophagy 3(3):181–206

    CAS  PubMed  Google Scholar 

  • Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441(7095):880

    CAS  PubMed  Google Scholar 

  • Kulkarni A, Chen J, Maday S (2018) Neuronal autophagy and intercellular regulation of homeostasis in the brain. Curr Opin Neurobiol 51:29–36

    CAS  PubMed  Google Scholar 

  • Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N (2004) The role of autophagy during the early neonatal starvation period. Nature 432(7020):1032

    CAS  PubMed  Google Scholar 

  • Lau A, Wang XJ, Zhao F, Villeneuve NF, Wu T, Jiang T, Sun Z, White E, Zhang DD (2010) A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62. Mol Cell Biol 30(13):3275–3285

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levine B, Kroemer G (2009) Autophagy and aging, disease and death: the true identity of cell death impostor. Cell Death Differ 16(1):1–2

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu F, Guan JL (2011) FIP200, an essential component of mammalian autophagy is indispensible for fetal hematopoiesis. Autophagy 7(2):229–230

    CAS  PubMed  Google Scholar 

  • Liu F, Lee JY, Wei H, Tanabe O, Engel JD, Morrison SJ, Guan JL (2010) FIP200 is required for the cell-autonomous maintenance of fetal hematopoietic stem cells. Blood 116(23):4806–4814

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Du Y, Zhang Z, Lv L, Xiong W, Zhang L, Li N, He H, Li Q, Liu Y (2018) Autophagy contributes to hypoxia-induced epithelial to mesenchymal transition of endometrial epithelial cells in endometriosis. Biol Rep. https://doi.org/10.1093/biolre/ioy128

    Article  Google Scholar 

  • Long Y, Wang G, Li K, Zhang Z, Zhang P, Zhang J, Zhang X, Bao Y, Yang X, Wang P (2018) Oxidative Stress and NF-κB signaling are involved in LPS induced pulmonary dysplasia in chick embryos. Cell Cycle 17(14):1757–1771

    CAS  PubMed  Google Scholar 

  • Lu WH, Wang G, Li Y, Li S, Song XY, Wang XY, Chuai M, Lee KKH, Cao L, Yang X (2014) Autophagy functions on EMT in gastrulation of avian embryo. Cell Cycle 13(17):2752–2764

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu WH, Shi YX, Ma ZL, Wang G, Liu L, Chuai M, Song X, Münsterburg A, Cao L, Yang X (2016) Proper autophagy is indispensable for angiogenesis during chick embryo development. Cell Cycle 15(13):1742–1754

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mah LY, Ryan KM (2012) Autophagy and cancer. Cold Spring Harb Perspect Biol 4(1):a008821

    PubMed  PubMed Central  Google Scholar 

  • Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci 78(12):7634–7638

    Google Scholar 

  • Massagué J (2008) TGFβ in cancer. Cell 25(2):215–230

    Google Scholar 

  • Meijer AJ, Codogno P (2009) Autophagy: regulation and role in disease. Crit Rev Clin Lab Sci 46(4):210–240

    CAS  PubMed  Google Scholar 

  • Menendez JA, Vellon L, Oliveras-Ferraros C, Cufí S, Vazquez-Marti A (2011) mTOR-regulated senescence and autophagy during reprogramming of somatic cells to pluripotency: a roadmap from energy metabolism to stem cell renewal and aging. Cell Cycle 10(21):3658–3677

    CAS  PubMed  Google Scholar 

  • Mizushima N (2018) A brief history of autophagy from cell biology to physiology and disease. Nat Cell Biol 20(1):521–527

    CAS  PubMed  Google Scholar 

  • Mizushima N, Levine B (2010) Autophagy in mammalian development and differentiation. Nat Cell Biol 12(9):823

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451(7182):1069

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of Atg proteins in autophagosome formation. Ann Rev Cell Dev Biol 27:107–132

    CAS  Google Scholar 

  • Mortensen M, Ferguson DJP, Edelmann M, Kessler B, Morten KJ, Komatsu M, Simon AK (2010) Loss of autophagy in erythroid cells leads to defective removal of mitochondria and severe anemia in vivo. Proc Natl Acad Sci 107(2):832–837

    Google Scholar 

  • Mortensen M, Watson AS, Simon AK (2011) Lack of autophagy in the hematopoietic system leads to loss of hematopoietic stem cell function and dysregulated myeloid proliferation. Autophagy 7(9):1069–1070

    CAS  PubMed  PubMed Central  Google Scholar 

  • Newman AC, Kemp AJ, Drabsch Y, Behrends C, Wilkinson S (2017) Autophagy acts through TRAF3 and RELB to regulate gene expression via antagonism of SMAD proteins. Nat Commun 8(1):1537

    Google Scholar 

  • Nieto MA, Sargent MG, Wilkinson DG, Cooke J (1994) Control of cell behavior during vertebrate development by Slug, a zinc finger gene. Science 264(5160):835–839

    CAS  PubMed  Google Scholar 

  • Onodera J, Ohsumi Y (2005) Autophagy is required for maintenance of amino acids levels and protein synthesis under nitrogen starvation. J Biol Chem 280(36):31582–31586

    CAS  PubMed  Google Scholar 

  • Pampliega O, Orhon I, Patel B, Sridhar S, Díaz-Carretero A, Beau I, Codogno P, Satir BH, Satir P, Cuervo AM (2013) Functional interaction between autophagy and ciliogenesis. Nature 502(7470):194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pan J, Snell W (2007) The primary cilium: keeper of the key to cell division. Cell 129(7):1255–1257

    CAS  PubMed  Google Scholar 

  • Parzych KR, Klionsky DJ (2014) An overview of autophagy: morphology, mechanism, and regulation. Antioxidants Redox Signal 20(3):460–473

    CAS  Google Scholar 

  • Paul S, Kashyap AK, Jia W, He YW, Schaefer BC (2012) Selective autophagy of the adaptor protein Bcl10 modulates T cell receptor activation of NF-κB. Immunity 36(6):947–958

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qiang L, Zhao B, Ming M, Wang N, He TC, Hwang S, Thorburn A, He YY (2014) Regulation of cell proliferation and migration by p62 through stabilization of Twist1. Proc Natl Acad Sci 5:201322913

    Google Scholar 

  • Salbreux G, Charras G, Paluch E (2012) Actin cortex mechanics and cellular morphogenesis. Trends Cell Biol 22(10):536–545

    CAS  PubMed  Google Scholar 

  • Sbrana FV, Cortini M, Avnet S, Perut F, Columbaro M, De Milito A, Baldini N (2016) The role of autophagy in the maintenance of stemness and differentiation of mesenchymal stem cells. Stem Cell Rev Rep 12(6):621–633

    CAS  Google Scholar 

  • Seglen PO, Gordon PB (1982) 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Nat Acad Sci USA 79(6):1889–1892

    CAS  PubMed  Google Scholar 

  • Sharif T, Martell E, Dai C, Kennedy BE, Murphy P, Clements DR,  Kim Y, Lee PWK, Gujar SA (2017) Autophagic homeostasis is required for the pluripotency of cancer stem cells. Autophagy 13(2):264–284

    CAS  PubMed  Google Scholar 

  • Sotthibundhu A, McDonagh K, von Kriegsheim A, Garcia-Munoz A, Klawiter A, Thompson K, Chauhan KD, Krawczyk J, McInerney V, Dockery P, Devine MJ, Kunath T, Barry F, O’Brien T, Shen S (2016) Rapamycin regulates autophagy and cell adhesion in induced pluripotent stem cells. Stem Cell Res Ther 7(1):166

    PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Yamanaka S (2006) “Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    CAS  PubMed  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    CAS  PubMed  Google Scholar 

  • Thomas M, Davis T, Loos B, Sishi B, Huisamen B, Strijdom H, Engelbrecht AM (2018) Autophagy is essential for the maintenance of amino acids and ATP levels during acute amino acid starvation in MDAMB231 cells. Cell Biochem Fun 36(2):65–79

    CAS  Google Scholar 

  • Thomson M, Liu SJ, Zou LN, Smith Z, Meissner A, Ramanathan S (2011) Pluripotency factors in embryonic stem cells regulate differentiation into germ layers. Cell 145(6):875–889

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukamoto S, Yamamoto A (2013) The role of autophagy in early mammalian embryonic development. J Mammalian Ova Res 30(3):86–94

    Google Scholar 

  • Vazquez-Martin A, Cufí S, Corominas-Faja B, Oliveras-Ferraros C, Vellon L, Menendez JA (2012) Mitochondrial fusion by pharmacological manipulation impedes somatic cell reprogramming to pluripotency: new insight into the role of mitophagy in cell stemness. Aging (Albany NY) 4(6):393

    CAS  Google Scholar 

  • Vessoni AT, Muotri AR, Okamoto OK (2011) Autophagy in stem cell maintenance and differentiation. Stem Cells Dev 21(4):513–520

    Google Scholar 

  • Wang Z, Oron E, Nelson B, Razis S, Ivanova N (2012) Distinct lineage specification roles for NANOG, OCT4, and SOX2 in human embryonic stem cells. Cell Stem Cell 10(4):440–454

    CAS  PubMed  Google Scholar 

  • Wang S, Xia P, Ye B, Huang G, Liu J, Fan Z (2013) Transient activation of autophagy via Sox2-mediated suppression of mTOR is an important early step in reprogramming to pluripotency. Cell Stem Cell 13(5):617–625

    CAS  PubMed  Google Scholar 

  • Wang Z, Zhu S, Zhang G, Liu S (2015) Inhibition of autophagy enhances the anticancer activity of bortezomib in B-cell acute lymphoblastic leukemia cells. Am J Cancer Res 5(2):639

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Chen EN, Liang C et al (2018) Atg7-mediated autophagy is involved in the neural crest cell generation in chick embryo. Mol Neurobiol 55(4):3523–3536

    CAS  PubMed  Google Scholar 

  • Yang Z, Klionsky DJ (2010) Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 22(2):124–131

    CAS  PubMed  Google Scholar 

  • Yorimitsu T, Klionsky DJ (2005) Autophagy: molecular machinery for self-eating. Cell Death Differ 12(S2):1542

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhi X, Zhong Q (2015) Autophagy in cancer. F1000prime reports, 7

  • Zhou J, Su P, Wang L, Chen J,  Zimmermann M, Genbacev O, Afonja O, Horne MC, Tanaka T, Duan E, Fisher SJ, Liao J, Chen J, Wang F (2009) mTOR supports long-term self-renewal and suppresses mesoderm and endoderm activities of human embryonic stem cells. Proc Natl Acad Sci 106(19):7840–7845

    Google Scholar 

  • Zou J, Liu Y, Li B, Zheng Z, Ke X, Hao Y, Li X, Li X, Liu F, Zhang Z (2017) Autophagy attenuates endothelial-to-mesenchymal-transition by promoting Snail degradation in human cardiac microvascular endothelial cells. Biosci Rep 37(5):BSR20171049

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Karthik Srirama Satya Divvela, M.Sc. for valuable discussions and support with literature acquisition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beate Brand-Saberi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Offei, E.B., Yang, X. & Brand-Saberi, B. The role of autophagy in morphogenesis and stem cell maintenance. Histochem Cell Biol 150, 721–732 (2018). https://doi.org/10.1007/s00418-018-1751-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-018-1751-0

Keywords

Navigation