Skip to main content
Log in

Tryptase as a polyfunctional component of mast cells

  • Review
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Mast cells are haematopoietic cells that arise from pluripotent precursors of the bone marrow. They play immunomodulatory roles in both health and disease. When appropriately activated, mast cells undergo degranulation, and preformed granule compounds are rapidly released into the surroundings. In many cases, the effects that mast cells have on various inflammatory settings are closely associated with the enzymatic characteristics of tryptase, the main granule compound of mast cells. Tryptase degranulation is often linked with the development of an immune response, allergy, inflammation, and remodelling of tissue architecture. Tryptase also represents an informative diagnostic marker of certain diseases and a prospective target for pharmacotherapy. In this review, we discuss the current knowledge about mast cell tryptase as one of the mast cell secretome proteases. The main points of the reviewed publications are highlighted with our microscopic images of mast cell tryptases visualized using immunohistochemical staining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alter SC, Metcalfe DD, Bradford TR, Schwartz LB (1987) Regulation of human mast cell tryptase. Effects of enzyme concentration, ionic strength and the structure and negative charge density of polysaccharides. Biochem J 248:821–827

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alter SC, Kramps JA, Janoff A, Schwartz LB (1990) Interactions of human mast cell tryptase with biological protease inhibitors. Arch Biochem Biophys 276:26–31

    Article  PubMed  CAS  Google Scholar 

  • Ammendola M, Zuccala V, Patruno R, Russo E, Luposella M, Amorosi A, Vescio G, Sammarco G, Montemurro S, De Sarro G, Sacco R, Ranieri G (2013) Tryptase-positive mast cells and angiogenesis in keloids: a new possible post-surgical target for prevention. Updates Surg 65:53–57

    Article  PubMed  Google Scholar 

  • Ammendola M, Leporini C, Marech I, Gadaleta CD, Scognamillo G, Sacco R, Sammarco G, De Sarro G, Russo E, Ranieri G (2014a) Targeting mast cells tryptase in tumor microenvironment: a potential antiangiogenetic strategy. Biomed Res Int 2014:154702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ammendola M, Sacco R, Sammarco G, Donato G, Montemurro S, Ruggieri E, Patruno R, Marech I, Cariello M, Vacca A, Gadaleta CD, Ranieri G (2014b) Correlation between serum tryptase, mast cells positive to tryptase and microvascular density in colo-rectal cancer patients: possible biological-clinical significance. PLoS One 9:e99512

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ammendola M, Sacco R, Sammarco G, Donato G, Zuccala V, Luposella M, Patruno R, Marech I, Montemurro S, Zizzo N, Gadaleta CD, Ranieri G (2014c) Mast cells density positive to tryptase correlates with angiogenesis in pancreatic ductal adenocarcinoma patients having undergone surgery. Gastroenterol Res Pract 2014:951957

    Article  PubMed  PubMed Central  Google Scholar 

  • Ammendola M, Patruno R, Sacco R, Marech I, Sammarco G, Zuccala V, Luposella M, Zizzo N, Gadaleta C, Porcelli M, Gadaleta CD, Ribatti D, Ranieri G (2016a) Mast cells positive to tryptase and tumour-associated macrophages correlate with angiogenesis in locally advanced colorectal cancer patients undergone to surgery. Expert Opin Ther Targets 20:533–540

    Article  PubMed  CAS  Google Scholar 

  • Ammendola M, Sacco R, Sammarco G, Piardi T, Zuccala V, Patruno R, Zullo A, Zizzo N, Nardo B, Marech I, Crovace A, Gadaleta CD, Pessaux P, Ranieri G (2016b) Mast cells positive to tryptase, endothelial cells positive to protease-activated receptor-2, and microvascular density correlate among themselves in hepatocellular carcinoma patients who have undergone surgery. Onco Targets Ther 9:4465–4471

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ammendola M, Sacco R, Zuccala V, Luposella M, Patruno R, Gadaleta P, Zizzo N, Gadaleta CD, De Sarro G, Sammarco G, Oltean M, Ranieri G (2016c) Mast cells density positive to tryptase correlate with microvascular density in both primary gastric cancer tissue and loco-regional lymph node metastases from patients that have undergone radical surgery. Int J Mol Sci 17:1905

    Article  PubMed Central  CAS  Google Scholar 

  • Annichkov NM, Kostantinov IE (2007) [A. A. Maksimov: on the 100th anniversary of the unitarian theory of hematopoiesis]. Arkh Patol 69:3–7

    PubMed  CAS  Google Scholar 

  • Atiakshin DA, Bykov EG, Il’in EA, Pashkov AN (2009) [Glycogen content in gerbil’s liver following the spacecraft Foton-M3 mission]. Aviakosm Ekolog Med 43:18–22

    PubMed  CAS  Google Scholar 

  • Atiakshin DA, Il’in EA, Pashkov AN (2010) [Morphofunctional state of hepatocytes nuclear apparatus in Mongolian herbils after the flight on space apparatus Foton-M3]. Aviakosm Ekolog Med 44:29–34

    PubMed  CAS  Google Scholar 

  • Atiakshin DA, Bykov EG, Il’in EA, Pashkov AN (2011) [Tissue-specific reaction of the mucous coat of herbals’ small gut under the influence of spaceflight factors on board biosat “Foton M3”]. Aviakosm Ekolog Med 45:25–30

    PubMed  CAS  Google Scholar 

  • Atiakshin D, Samoilova V, Buchwalow I, Boecker W, Tiemann M (2017) Characterization of mast cell populations using different methods for their identification. Histochem Cell Biol 147:683–694

    Article  PubMed  CAS  Google Scholar 

  • Benitez-Bribiesca L, Wong A, Utrera D, Castellanos E (2001) The role of mast cell tryptase in neoangiogenesis of premalignant and malignant lesions of the uterine cervix. J Histochem Cytochem 49:1061–1062

    Article  PubMed  CAS  Google Scholar 

  • Blair RJ, Meng H, Marchese MJ, Ren S, Schwartz LB, Tonnesen MG, Gruber BL (1997) Human mast cells stimulate vascular tube formation. Tryptase is a novel, potent angiogenic factor. J Clin Invest 99:2691–2700

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blank U, Madera-Salcedo IK, Danelli L, Claver J, Tiwari N, Sanchez-Miranda E, Vazquez-Victorio G, Ramirez-Valadez KA, Macias-Silva M, Gonzalez-Espinosa C (2014) Vesicular trafficking and signaling for cytokine and chemokine secretion in mast cells. Front Immunol 5:453

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blott EJ, Griffiths GM (2002) Secretory lysosomes. Nat Rev Mol Cell Biol 3:122–131

    Article  PubMed  CAS  Google Scholar 

  • Buchwalow IB, Boecker W (2010) Immunohistochemistry: basics and methods, 1 ed. Heidelberg. Springer, Dordrecht

    Book  Google Scholar 

  • Buchwalow I, Boecker W, Tiemann M (2015) The contribution of Paul Ehrlich to histochemistry: a tribute on the occasion of the centenary of his death. Virchows Arch 466:111–116

    Article  PubMed  CAS  Google Scholar 

  • Bykov VL (1999) [Secretory mechanisms and secretory products of mast cells]. Morfologiia 115:64–72

    PubMed  CAS  Google Scholar 

  • Cairns JA (2005) Inhibitors of mast cell tryptase beta as therapeutics for the treatment of asthma and inflammatory disorders. Pulm Pharmacol Ther 18:55–66

    Article  PubMed  CAS  Google Scholar 

  • Caughey GH (1994) Serine proteinases of mast cell and leukocyte granules. A league of their own. Am J Respir Crit Care Med 150:S138–S142

    Article  Google Scholar 

  • Caughey GH (2006) Tryptase genetics and anaphylaxis. J Allergy Clin Immunol 117:1411–1414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Caughey GH (2007) Mast cell tryptases and chymases in inflammation and host defense. Immunol Rev 217:141–154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Caughey GH (2011) Mast cell proteases as protective and inflammatory mediators. Adv Exp Med Biol 716:212–234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Caughey GH (2016) Mast cell proteases as pharmacological targets. Eur J Pharmacol 778:44–55

    Article  PubMed  CAS  Google Scholar 

  • Corvera CU, Dery O, McConalogue K, Bohm SK, Khitin LM, Caughey GH, Payan DG, Bunnett NW (1997) Mast cell tryptase regulates rat colonic myocytes through proteinase-activated receptor 2. J Clin Invest 100:1383–1393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Craig SS, Schwartz LB (1990) Human MCTC type of mast cell granule: the uncommon occurrence of discrete scrolls associated with focal absence of chymase. Lab Invest 63:581–585

    PubMed  CAS  Google Scholar 

  • Craig SS, Schechter NM, Schwartz LB (1988) Ultrastructural analysis of human T and TC mast cells identified by immunoelectron microscopy. Lab Invest 58:682–691

    PubMed  CAS  Google Scholar 

  • Crivellato E, Beltrami C, Mallardi F, Ribatti D (2003a) Paul Ehrlich’s doctoral thesis: a milestone in the study of mast cells. Br J Haematol 123:19–21

    Google Scholar 

  • Crivellato E, Nico B, Vacca A, Ribatti D (2003b) Ultrastructural analysis of mast cell recovery after secretion by piecemeal degranulation in B-cell non-Hodgkin’s lymphoma. Leuk Lymphoma 44:517–521

    Article  PubMed  CAS  Google Scholar 

  • Crivellato E, Nico B, Ribatti D (2008) Mast cells and tumour angiogenesis: new insight from experimental carcinogenesis. Cancer Lett 269:1–6

    Article  PubMed  CAS  Google Scholar 

  • Crivellato E, Travan L, Ribatti D (2015) The phylogenetic profile of mast cells. Methods Mol Biol 1220:11–27

    Article  PubMed  CAS  Google Scholar 

  • Dai H, Korthuis RJ (2011) Mast Cell Proteases and Inflammation. Drug Discov Today Dis Models 8:47–55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dines KC, Powell HC (1997) Mast cell interactions with the nervous system: relationship to mechanisms of disease. J Neuropathol Exp Neurol 56:627–640

    Article  PubMed  CAS  Google Scholar 

  • Dvorak AM (1989) Human mast cells. Adv Anat Embryol Cell Biol 114:1–107

    Article  PubMed  CAS  Google Scholar 

  • Dvorak AM (1995) Ultrastructural analysis of human mast cells and basophils. Chem Immunol 61:1–33

    PubMed  CAS  Google Scholar 

  • Dvorak AM (2005a) Degranulation and recovery from degranulation of basophils and mast cells. Chem Immunol Allergy 85:205–251

    Article  PubMed  Google Scholar 

  • Dvorak AM (2005b) Ultrastructural studies of human basophils and mast cells. J Histochem Cytochem 53:1043–1070

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich P (1878) Beiträge für Theorie und Praxis der histologischen Färbung. Leipzig University, Leipzig, p 65

    Google Scholar 

  • Estevez MD, Vieytes MR, Louzao MC, Alfonso A, Vilarino N, Botana LM (1997) The antineoplastic drug vinorelbine activates non-immunological histamine release from rat mast cells. Inflamm Res 46:119–124

    Article  PubMed  CAS  Google Scholar 

  • Gaber MA, Seliet IA, Ehsan NA, Megahed MA (2014) Mast cells and angiogenesis in wound healing. Anal Quant Cytopathol Histpathol 36:32–40

    PubMed  Google Scholar 

  • Galli SJ, Tsai M (2008) Mast cells: versatile regulators of inflammation, tissue remodeling, host defense and homeostasis. J Dermatol Sci 49:7–19

    Article  PubMed  CAS  Google Scholar 

  • Galli SJ, Grimbaldeston M, Tsai M (2008) Immunomodulatory mast cells: negative, as well as positive, regulators of immunity. Nat Rev Immunol 8:478–486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Galli SJ, Tsai M, Marichal T, Tchougounova E, Reber LL, Pejler G (2015) Approaches for analyzing the roles of mast cells and their proteases in vivo. Adv Immunol 126:45–127

    Article  PubMed  PubMed Central  Google Scholar 

  • Galli SJ, Starkl P, Marichal T, Tsai M (2016) Mast cells and IgE in defense against venoms: Possible “good side” of allergy? Allergol Int 65:3–15

    Article  PubMed  CAS  Google Scholar 

  • Glenner GG, Cohen LA (1960) Histochemical demonstration of a species-specific trypsin-like enzyme in mast cells. Nature 185:846–847

    Article  PubMed  CAS  Google Scholar 

  • Goffredo V, Gadaleta CD, Laterza A, Vacca A, Ranieri G (2013) Tryptase serum levels in patients suffering from hepatocellular carcinoma undergoing intra-arterial chemoembolization: possible predictive role of response to treatment. Mol Clin Oncol 1:385–389

    Article  PubMed  PubMed Central  Google Scholar 

  • Gomori G (1953a) Chloroacyl esters as histochemical substrates. J Histochem Cytochem 1:469–470

    Article  PubMed  CAS  Google Scholar 

  • Gomori G (1953b) Human esterases. J Lab Clin Med 42:445–453

    PubMed  CAS  Google Scholar 

  • Gruber BL, Kew RR, Jelaska A, Marchese MJ, Garlick J, Ren S, Schwartz LB, Korn JH (1997) Human mast cells activate fibroblasts: tryptase is a fibrogenic factor stimulating collagen messenger ribonucleic acid synthesis and fibroblast chemotaxis. J Immunol 158:2310–2317

    PubMed  CAS  Google Scholar 

  • Hallgren J, Gurish MF (2014) Granule maturation in mast cells: histamine in control. Eur J Immunol 44:33–36

    Article  PubMed  CAS  Google Scholar 

  • Hallgren J, Pejler G (2006) Biology of mast cell tryptase. An inflammatory mediator. FEBS J 273:1871–1895

    Article  PubMed  CAS  Google Scholar 

  • Hallgren J, Spillmann D, Pejler G (2001) Structural requirements and mechanism for heparin-induced activation of a recombinant mouse mast cell tryptase, mouse mast cell protease-6: formation of active tryptase monomers in the presence of low molecular weight heparin. J Biol Chem 276:42774–42781

    Article  PubMed  CAS  Google Scholar 

  • Hernández-Hernández L, Sanz C, García-Solaesa V, Padrón J, García-Sánchez A, Dávila I, Isidoro-García M, Lorente F (2012) Tryptase: genetic and functional considerations. Allergol Immunopathol 40:385–389

    Article  Google Scholar 

  • Huang C, De Sanctis GT, O’Brien PJ, Mizgerd JP, Friend DS, Drazen JM, Brass LF, Stevens RL (2001) Evaluation of the substrate specificity of human mast cell tryptase beta I and demonstration of its importance in bacterial infections of the lung. J Biol Chem 276:26276–26284

    Article  PubMed  CAS  Google Scholar 

  • Huntington JA, Read RJ, Carrell RW (2000) Structure of a serpin-protease complex shows inhibition by deformation. Nature 407:923–926

    Article  PubMed  CAS  Google Scholar 

  • Imada A, Shijubo N, Kojima H, Abe S (2000) Mast cells correlate with angiogenesis and poor outcome in stage I lung adenocarcinoma. Eur Respir J 15:1087–1093

    Article  PubMed  CAS  Google Scholar 

  • Johnson JL, Jackson CL, Angelini GD, George SJ (1998) Activation of matrix-degrading metalloproteinases by mast cell proteases in atherosclerotic plaques. Arterioscler Thromb Vasc Biol 18:1707–1715

    Article  PubMed  CAS  Google Scholar 

  • Karasuyama H, Mukai K, Obata K, Tsujimura Y, Wada T (2011) Nonredundant roles of basophils in immunity. Annu Rev Immunol 29:45–69

    Article  PubMed  CAS  Google Scholar 

  • Karasuyama H, Miyake K, Yoshikawa S, Yamanishi Y (2017) Multifaceted roles of basophils in health and disease. J Allergy Clin Immunol 140:1473–1476

    Article  CAS  Google Scholar 

  • Konstantinov IE (2000) In search of Alexander A. Maximow: the man behind the unitarian theory of hematopoiesis. Perspect Biol Med 43:269–276

    Article  PubMed  CAS  Google Scholar 

  • Kovacs P, Hernadi I, Wilhelm M (2006) Mast cells modulate maintained neuronal activity in the thalamus in vivo. J Neuroimmunol 171:1–7

    Article  PubMed  CAS  Google Scholar 

  • Krishnaswamy G, Kelley J, Johnson D, Youngberg G, Stone W, Huang SK, Bieber J, Chi DS (2001) The human mast cell: functions in physiology and disease. Front Biosci 6:D1109–D1127

    Article  Google Scholar 

  • Krishnaswamy G, Ajitawi O, Chi DS (2006) The human mast cell: an overview. Methods Mol Biol 315:13–34

    PubMed  Google Scholar 

  • Krystel-Whittemore M, Dileepan KN, Wood JG (2015) Mast cell: a multi-functional master cell. Front Immunol 6:620

    PubMed  Google Scholar 

  • Kubo M (2016) Basophil and mast cells—their similarity and functional difference. Arerugi 65:926–931

    PubMed  Google Scholar 

  • Lagunoff D (1972) Contributions of electron microscopy to the study of mast cells. J Invest Dermatol 58:296–311

    Article  PubMed  CAS  Google Scholar 

  • Le QT, Min HK, Xia HZ, Fukuoka Y, Katunuma N, Schwartz LB (2011) Promiscuous processing of human alphabeta-protryptases by cathepsins L, B, and C. J Immunol 186:7136–7143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Levi-Schaffer F, Piliponsky AM (2003) Tryptase, a novel link between allergic inflammation and fibrosis. Trends Immunol 24:158–161

    Article  PubMed  CAS  Google Scholar 

  • Lundequist A, Boyce JA (2011) LPA5 is abundantly expressed by human mast cells and important for lysophosphatidic acid induced MIP-1beta release. PLoS One 6:e18192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lundequist A, Pejler G (2011) Biological implications of preformed mast cell mediators. Cell Mol Life Sci 68:965–975

    Article  PubMed  CAS  Google Scholar 

  • Lyons JJ, Yu X, Hughes JD, Le QT, Jamil A, Bai Y, Ho N, Zhao M, Liu Y, O’Connell MP, Trivedi NN, Nelson C, DiMaggio T, Jones N, Matthews H, Lewis KL, Oler AJ, Carlson RJ, Arkwright PD, Hong C, Agama S, Wilson TM, Tucker S, Zhang Y, McElwee JJ, Pao M, Glover SC, Rothenberg ME, Hohman RJ, Stone KD, Caughey GH, Heller T, Metcalfe DD, Biesecker LG, Schwartz LB, Milner JD (2016) Elevated basal serum tryptase identifies a multisystem disorder associated with increased TPSAB1 copy number. Nat Genet 48:1564–1569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Malfettone A, Silvestris N, Saponaro C, Ranieri G, Russo A, Caruso S, Popescu O, Simone G, Paradiso A, Mangia A (2013) High density of tryptase-positive mast cells in human colorectal cancer: a poor prognostic factor related to protease-activated receptor 2 expression. J Cell Mol Med 17:1025–1037

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marech I, Ammendola M, Sacco R, Capriuolo GS, Patruno R, Rubini R, Luposella M, Zuccala V, Savino E, Gadaleta CD, Ribatti D, Ranieri G (2014) Serum tryptase, mast cells positive to tryptase and microvascular density evaluation in early breast cancer patients: possible translational significance. BMC Cancer 14:534

    Article  PubMed  PubMed Central  Google Scholar 

  • Maximow A (1909) Der Lymphozyt als gemeinsame Stammzelle der verschiedenen Blutelemente in der embryonalen Entwicklung und im postfetalen Leben der Säugetiere. Folia Haematologica 8:125–134

    Google Scholar 

  • Metcalfe DD, Baram D, Mekori YA (1997) Mast cells. Physiol Rev 77:1033–1079

    Article  PubMed  CAS  Google Scholar 

  • Molinari JF, Scuri M, Moore WR, Clark J, Tanaka R, Abraham WM (1996) Inhaled tryptase causes bronchoconstriction in sheep via histamine release. Am J Respir Crit Care Med 154:649–653

    Article  PubMed  CAS  Google Scholar 

  • Nico B, Marzullo A, Corsi P, Vacca A, Roncali L, Ribatti D (2004) A possible role of tryptase in angiogenesis in the brain of mdx mouse, a model of Duchenne muscular dystrophy. Neuroscience 123:585–588

    Article  PubMed  CAS  Google Scholar 

  • Pejler G, Abrink M, Ringvall M, Wernersson S (2007) Mast cell proteases. Adv Immunol 95:167–255

    Article  PubMed  CAS  Google Scholar 

  • Pejler G, Ronnberg E, Waern I, Wernersson S (2010) Mast cell proteases: multifaceted regulators of inflammatory disease. Blood 115:4981–4990

    Article  PubMed  CAS  Google Scholar 

  • Pejler G, Hu Frisk JM, Sjostrom D, Paivandy A, Ohrvik H (2017) Acidic pH is essential for maintaining mast cell secretory granule homeostasis. Cell Death Dis 8:e2785

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ribatti D (2016a) The development of human mast cells. An historical reappraisal. Exp Cell Res 342:210–215

    Article  PubMed  CAS  Google Scholar 

  • Ribatti D (2016b) Mast cells as therapeutic target in cancer. Eur J Pharmacol 778:152–157

    Article  PubMed  CAS  Google Scholar 

  • Ribatti D (2016c) Mast cells in lymphomas. Crit Rev Oncol Hematol 101:207–212

    Article  PubMed  Google Scholar 

  • Ribatti D, Crivellato E (2012) Mast cells, angiogenesis, and tumour growth. Biochim Biophys Acta 1822:2–8

    Article  PubMed  CAS  Google Scholar 

  • Ribatti D, Crivellato E (2016) The role of mast cell in tissue morphogenesis. Thymus, duodenum, and mammary gland as examples. Exp Cell Res 341:105–109

    Article  PubMed  CAS  Google Scholar 

  • Ribatti D, Ranieri G (2015) Tryptase, a novel angiogenic factor stored in mast cell granules. Exp Cell Res 332:157–162

    Article  PubMed  CAS  Google Scholar 

  • Ronnberg E, Pejler G (2012) Serglycin: the master of the mast cell. Methods Mol Biol 836:201–217

    Article  PubMed  CAS  Google Scholar 

  • Ronnberg E, Melo FR, Pejler G (2012) Mast cell proteoglycans. J Histochem Cytochem 60:950–962

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rothe MJ, Nowak M, Kerdel FA (1990) The mast cell in health and disease. J Am Acad Dermatol 23:615–624

    Article  PubMed  CAS  Google Scholar 

  • Schwartz LB (1990) Tryptase, a mediator of human mast cells. J Allergy Clin Immunol 86:594–598

    Article  PubMed  CAS  Google Scholar 

  • Schwartz LB, Atkins PC, Bradford TR, Fleekop P, Shalit M, Zweiman B (1987a) Release of tryptase together with histamine during the immediate cutaneous response to allergen. J Allergy Clin Immunol 80:850–855

    Article  PubMed  CAS  Google Scholar 

  • Schwartz LB, Irani AM, Roller K, Castells MC, Schechter NM (1987b) Quantitation of histamine, tryptase, and chymase in dispersed human T and TC mast cells. J Immunol 138:2611–2615

    PubMed  CAS  Google Scholar 

  • Selwood T, Smolensky H, McCaslin DR, Schechter NM (2005) The interaction of human tryptase-beta with small molecule inhibitors provides new insights into the unusual functional instability and quaternary structure of the protease. Biochemistry 44:3580–3590

    Article  PubMed  CAS  Google Scholar 

  • Shukla SA, Veerappan R, Whittimore JS, Ellen Miller L, Youngberg GA (2006) Mast cell ultrastructure and staining in tissue. Methods Mol Biol 315:63–76

    PubMed  Google Scholar 

  • Silverman AJ, Sutherland AK, Wilhelm M, Silver R (2000) Mast cells migrate from blood to brain. J Neurosci 20:401–408

    Article  PubMed  CAS  Google Scholar 

  • Singh J, Shah R, Singh D (2016) Targeting mast cells: uncovering prolific therapeutic role in myriad diseases. Int Immunopharmacol 40:362–384

    Article  PubMed  CAS  Google Scholar 

  • Somasundaram P, Ren G, Nagar H, Kraemer D, Mendoza L, Michael LH, Caughey GH, Entman ML, Frangogiannis NG (2005) Mast cell tryptase may modulate endothelial cell phenotype in healing myocardial infarcts. J Pathol 205:102–111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Soto D, Malmsten C, Blount JL, Muilenburg DJ, Caughey GH (2002) Genetic deficiency of human mast cell alpha-tryptase. Clin Exp Allergy 32:1000–1006

    Article  PubMed  CAS  Google Scholar 

  • Steinhoff M, Buddenkotte J, Shpacovitch V, Rattenholl A, Moormann C, Vergnolle N, Luger TA, Hollenberg MD (2005) Proteinase-activated receptors: transducers of proteinase-mediated signaling in inflammation and immune response. Endocr Rev 26:1–43

    Article  PubMed  CAS  Google Scholar 

  • Syväranta S, Helske S, Laine M, Lappalainen J, Kupari M, Mayranpaa MI, Lindstedt KA, Kovanen PT (2010) Vascular endothelial growth factor-secreting mast cells and myofibroblasts: a novel self-perpetuating angiogenic pathway in aortic valve stenosis. Arterioscler Thromb Vasc Biol 30:1220–1227

    Article  PubMed  CAS  Google Scholar 

  • Theoharides TC, Alysandratos KD, Angelidou A, Delivanis DA, Sismanopoulos N, Zhang B, Asadi S, Vasiadi M, Weng Z, Miniati A, Kalogeromitros D (2012) Mast cells and inflammation. Biochim Biophys Acta 1822:21–33

    Article  PubMed  CAS  Google Scholar 

  • Trivedi NN, Caughey GH (2010) Mast cell peptidases: chameleons of innate immunity and host defense. Am J Respir Cell Mol Biol 42:257–267

    Article  PubMed  CAS  Google Scholar 

  • Trivedi NN, Tong Q, Raman K, Bhagwandin VJ, Caughey GH (2007) Mast cell alpha and beta tryptases changed rapidly during primate speciation and evolved from gamma-like transmembrane peptidases in ancestral vertebrates. J Immunol 179:6072–6079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsutsui H, Yamanishi Y, Ohtsuka H, Sato S, Yoshikawa S, Karasuyama H (2017) The basophil-specific protease mMCP-8 provokes an inflammatory response in the skin with microvascular hyperpermeability and leukocyte infiltration. J Biol Chem 292:1061–1067

    Article  PubMed  CAS  Google Scholar 

  • Ui H, Andoh T, Lee JB, Nojima H, Kuraishi Y (2006) Potent pruritogenic action of tryptase mediated by PAR-2 receptor and its involvement in anti-pruritic effect of nafamostat mesilate in mice. Eur J Pharmacol 530:172–178

    Article  PubMed  CAS  Google Scholar 

  • Vitte J (2015) Human mast cell tryptase in biology and medicine. Mol Immunol 63:18–24

    Article  PubMed  CAS  Google Scholar 

  • Vukman KV, Forsonits A, Oszvald A, Toth EA, Buzas EI (2017) Mast cell secretome: soluble and vesicular components. Semin Cell Dev Biol 67:65–73

    Article  PubMed  CAS  Google Scholar 

  • Vyas H, Krishnaswamy G (2006) Paul Ehrlich’s “Mastzellen”—from aniline dyes to DNA chip arrays: a historical review of developments in mast cell research. Methods Mol Biol 315:3–11

    PubMed  Google Scholar 

  • Welle MM, Audige L, Belz JP (1997) The equine endometrial mast cell during the puerperal period: evaluation of mast cell numbers and types in comparison to other inflammatory changes. Vet Pathol 34:23–30

    Article  PubMed  CAS  Google Scholar 

  • Wernersson S, Pejler G (2014) Mast cell secretory granules: armed for battle. Nat Rev Immunol 14:478–494

    Article  PubMed  CAS  Google Scholar 

  • Whitaker-Menezes D, Schechter NM, Murphy GF (1995) Serine proteinases are regionally segregated within mast cell granules. Lab Invest 72:34–41

    PubMed  CAS  Google Scholar 

  • Wilhelm M, Silver R, Silverman AJ (2005) Central nervous system neurons acquire mast cell products via transgranulation. Eur J Neurosci 22:2238–2248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Williams CM, Galli SJ (2000) Mast cells can amplify airway reactivity and features of chronic inflammation in an asthma model in mice. J Exp Med 192:455–462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wolters PJ, Pham CT, Muilenburg DJ, Ley TJ, Caughey GH (2001) Dipeptidyl peptidase I is essential for activation of mast cell chymases, but not tryptases, in mice. J Biol Chem 276:18551–18556

    Article  PubMed  CAS  Google Scholar 

  • Yu M, Tsai M, Tam SY, Jones C, Zehnder J, Galli SJ (2006) Mast cells can promote the development of multiple features of chronic asthma in mice. J Clin Invest 116:1633–1641

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Buchwalow.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atiakshin, D., Buchwalow, I., Samoilova, V. et al. Tryptase as a polyfunctional component of mast cells. Histochem Cell Biol 149, 461–477 (2018). https://doi.org/10.1007/s00418-018-1659-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-018-1659-8

Keywords

Navigation