Skip to main content

Advertisement

Log in

Establishment of a myelinating co-culture system with a motor neuron-like cell line NSC-34 and an adult rat Schwann cell line IFRS1

  • Short Communication
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Co-culture models of neurons and Schwann cells have been utilized for the study of myelination and demyelination in the peripheral nervous system; in most of the previous studies, however, these cells were obtained by primary culture with embryonic or neonatal animals. A spontaneously immortalized Schwann cell line IFRS1 from long-term cultures of adult Fischer rat peripheral nerves has been shown to retain fundamental ability to myelinate neurites in co-cultures with adult rat dorsal root ganglion neurons and nerve growth factor-primed PC12 cells. Our current investigation focuses on the establishment of stable co-culture system with IFRS1 cells and NSC-34 motor neuron-like cells. NSC-34 cells were seeded at a low density (2 × 103/cm2) and maintained for 5–7 days in serum-containing medium supplemented with non-essential amino acids and brain-derived neurotrophic factor (BDNF; 10 ng/mL). Upon observation of neurite outgrowth under a phase-contrast microscope, the NSC-34 cells were exposed to an anti-mitotic agent mitomycin C (1 µg/mL) for 12–16 h, then co-cultured with IFRS1 cells (2 × 104/cm2), and maintained in serum-containing medium supplemented with ascorbic acid (50 µg/mL), BDNF (10 ng/mL), and ciliary neurotrophic factor (10 ng/mL). Double immunofluorescence staining carried out at day 28 of the co-culture showed myelin protein (P0 or PMP22)-immunoreactive IFRS1 cells surrounding the βIII tubulin-immunoreactive neurites. This co-culture system can be a beneficial tool to study the pathogenesis of motor neuron diseases (e.g., amyotrophic lateral sclerosis, Charcot–Marie–Tooth diseases, and immune-mediated demyelinating neuropathies) and novel therapeutic approaches against them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Acquarone M, de Melo TM, Meireles F, Brito-Moreira J, Oliveira G, Ferreira ST, Castro NG, Tovar-Moll F, Houzel JC, Rehen SK (2015) Mitomycin-treated undifferentiated embryonic stem cells as a safe and effective therapeutic strategy in a mouse model of Parkinson’s disease. Front Cell Neurosci 9:97

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cashman NR, Durham HD, Blusztajn JK, Oda K, Tabira T, Shaw IT, Dahrouge S, Antel JP (1992) Neuroblastoma × spinal cord (NSC) hybrid cell lines resemble developing motor neurons. Dev Dyn 194:209–221

    Article  PubMed  CAS  Google Scholar 

  • Chan JR, Cosgaya JM, Wu YJ, Shooter EM (2001) Neurotrophins are key mediators of the myelination program in the peripheral nervous system. Proc Natl Acad Sci USA 98:14661–14668

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Domagala W, Woźniak L, Lasota J, Weber K, Osborn M (1990) Vimentin is preferentially expressed in high-grade ductal and medullary, but not in lobular breast carcinomas. Am J Pathol 137:1059–1064

    PubMed  PubMed Central  CAS  Google Scholar 

  • Eggett CJ, Crosier S, Manning P, Cookson MR, Menzies FM, McNeil CJ, Shaw PJ (2000) Development and characterisation of a glutamate-sensitive motor neurone cell line. J Neurochem 74:1895–1902

    Article  PubMed  CAS  Google Scholar 

  • Eldridge CF, Bunge MB, Bunge RP, Wood PM (1987) Differentiation of axon-related Schwann cells in vitro. I. Ascorbic acid regulates basal lamina assembly and myelin formation. J Cell Biol 105:1023–1034

    Article  PubMed  CAS  Google Scholar 

  • Gingras M, Beaulieu MM, Gagnon V, Durham HD, Berthod F (2008) In vitro study of axonal migration and myelination of motor neurons in a three-dimensional tissue-engineered model. Glia 56:354–364

    Article  PubMed  Google Scholar 

  • Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA 73:2424–2428

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hyung S, Yoon Lee B, Park JC, Kim J, Hur EM, Francis Suh JK (2015) Coculture of primary motor neurons and schwann cells as a model for in vitro myelination. Sci Rep 5:15122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ishii T, Kawakami E, Endo K, Misawa H, Watabe K (2017) Myelinating cocultures of rodent stem cell line-derived neurons and immortalized Schwann cells. Neuropathology 37:475–481

    Article  PubMed  CAS  Google Scholar 

  • La Marca R, Cerri F, Horiuchi K, Bachi A, Feltri ML, Wrabetz L, Blobel CP, Quattrini A, Salzer JL, Taveggia C (2011) TACE (ADAM17) inhibits Schwann cell myelination. Nat Neurosci 14:857–865

    Article  PubMed  CAS  Google Scholar 

  • Lang EM, Schlegel N, Reiners K, Hofmann GO, Sendtner M, Asan E (2008) Single-dose application of CNTF and BDNF improves remyelination of regenerating nerve fibers after C7 ventral root avulsion and replantation. J Neurotrauma 25:384–400

    Article  PubMed  Google Scholar 

  • Li X, Huang J, May JM (2003) Ascorbic acid spares alpha-tocopherol and decreases lipid peroxidation in neuronal cells. Biochem Biophys Res Commun 305:656–661

    Article  PubMed  CAS  Google Scholar 

  • Lobsiger CS, Smith PM, Buchstaller J, Schweitzer B, Franklin RJ, Suter U, Taylor V (2001) a conditionally immortalized Schwann cell precursor line that generates myelin. Glia 36:31–47

    Article  PubMed  CAS  Google Scholar 

  • Matusica D, Fenech MP, Rogers ML, Rush RA (2008) Characterization and use of the NSC-34 cell line for study of neurotrophin receptor trafficking. J Neurosci Res 86:553–565

    Article  PubMed  CAS  Google Scholar 

  • Miles GB, Yohn DC, Wichterle H, Jessell TM, Rafuse VF, Brownstone RM (2004) Functional properties of motoneurons derived from mouse embryonic stem cells. J Neurosci 24:7848–7858

    Article  PubMed  CAS  Google Scholar 

  • Mitani K, Sekiguchi F, Maeda T, Tanaka Y, Yoshida S, Kawabata A (2016) The prostaglandin E2/EP4 receptor/cyclic AMP/T-type Ca(2+) channel pathway mediates neuritogenesis in sensory neuron-like ND7/23 cells. J Pharmacol Sci 130:177–180

    Article  PubMed  CAS  Google Scholar 

  • Murakami T, Saitoh I, Inada E, Kurosawa M, Iwase Y, Noguchi H, Terao Y, Yamasaki Y, Hayasaki H, Sato M (2013) STO feeder cells are useful for propagation of primarily cultured human deciduous dental pulp cells by eliminating contaminating bacteria and promoting cellular outgrowth. Cell Med 6:75–81

    Article  PubMed  PubMed Central  Google Scholar 

  • Niimi N, Yako H, Tsukamoto M, Takaku S, Yamauchi J, Kawakami E, Yanagisawa H, Watabe K, Utsunomiya K, Sango K (2016) Involvement of oxidative stress and impaired lysosomal degradation in amiodarone-induced schwannopathy. Eur J Neurosci 44:1723–1733

    Article  PubMed  Google Scholar 

  • Nishimoto S, Tanaka H, Okamoto M, Okada K, Murase T, Yoshikawa H (2015) Methylcobalamin promotes the differentiation of Schwann cells and remyelination in lysophosphatidylcholine-induced demyelination of the rat sciatic nerve. Front Cell Neurosci 9:298

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roa BB, Dyck PJ, Marks HG, Chance PF, Lupski JR (1993) Dejerine–Sottas syndrome associated with point mutation in the peripheral myelin protein 22 (PMP22) gene. Nat Genet 5:269–273

    Article  PubMed  CAS  Google Scholar 

  • Rossner M, Yamada KM (2004) What’s in a picture? The temptation of image manipulation. J Cell Biol 166:11–15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saavedra JT, Wolterman RA, Baas F, ten Asbroek AL (2008) Myelination competent conditionally immortalized mouse Schwann cells. J Neurosci Methods 174:25–30

    Article  PubMed  Google Scholar 

  • Sabitha KR, Sanjay D, Savita B, Raju TR, Laxmi TR (2016) Electrophysiological characterization of Nsc-34 cell line using Microelectrode Array. J Neurol Sci 370:134–139

    Article  PubMed  CAS  Google Scholar 

  • Sango K, Yamauchi J (2014) Schwann cell development and pathology. Springer, Tokyo

    Book  Google Scholar 

  • Sango K, Yanagisawa H, Kawakami E, Takaku S, Ajiki K, Watabe K (2011) Spontaneously immortalized Schwann cells from adult Fischer rat as a valuable tool for exploring neuron–Schwann cell interactions. J Neurosci Res 89:898–908

    Article  PubMed  CAS  Google Scholar 

  • Sango K, Kawakami E, Yanagisawa H, Takaku S, Tsukamoto M, Utsunomiya K, Watabe K (2012) Myelination in coculture of established neuronal and Schwann cell lines. Histochem Cell Biol 137:829–839

    Article  PubMed  CAS  Google Scholar 

  • Stankoff B, Aigrot MS, Noël F, Wattilliaux A, Zalc B, Lubetzki C (2002) Ciliary neurotrophic factor (CNTF) enhances myelin formation: a novel role for CNTF and CNTF-related molecules. J Neurosci 22:9221–9227

    Article  PubMed  CAS  Google Scholar 

  • Stonecypher MS, Chaudhury AR, Byer SJ, Carroll SL (2006) Neuregulin growth factors and their ErbB receptors form a potential signaling network for schwannoma tumorigenesis. J Neuropathol Exp Neurol 65:162–175

    Article  PubMed  CAS  Google Scholar 

  • Syed N, Reddy K, Yang DP, Taveggia C, Salzer JL, Maurel P, Kim HA (2010) Soluble neuregulin-1 has bifunctional, concentration-dependent effects on Schwann cell myelination. J Neurosci 30:6122–6131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tep C, Kim ML, Opincariu LI, Limpert AS, Chan JR, Appel B, Carter BD, Yoon SO (2012) Brain-derived neurotrophic factor (BDNF) induces polarized signaling of small GTPase (Rac1) protein at the onset of Schwann cell myelination through partitioning-defective 3 (Par3) protein. J Biol Chem 287:1600–1608

    Article  PubMed  CAS  Google Scholar 

  • Usuki S, Cashman NR, Miyatake T (1999) GM2 promotes ciliary neurotrophic factor-dependent rescue of immortalized motor neuron-like cell (NSC-34). Neurochem Res 24:281–286

    Article  PubMed  CAS  Google Scholar 

  • Vent J, Wyatt TA, Smith DD, Banerjee A, Ludueña RF, Sisson JH, Hallworth R (2005) Direct involvement of the isotype-specific C-terminus of beta tubulin in ciliary beating. J Cell Sci 118:4333–4341

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang L, Zhang B, Toku K, Maeda N, Sakanaka M, Tanaka J (2000) Improvement of the viability of cultured rat neurons by the non-essential amino acids l-serine and glycine that upregulates expression of the anti-apoptotic gene product Bcl-w. Neurosci Lett 295:97–100

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a Grant-in-aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan (JSPS KAKENHI 16K07048). We would like to thank Dr. Kazuhiko Watabe for providing us NSC-34 cells, Drs. Tatsufumi Murakami, Tomoko Ishibashi and Mari Suzuki for helpful suggestions, and the late Kyoko Ajiki for her enormous contribution to the histochemical analyses.

Author information

Authors and Affiliations

Authors

Contributions

ST and KS conducted cell culture. ST, HY, NN, and TA conducted immunocytochemical analysis and image presentation. KS, DK, and KU designed the experiments and KS supervised the project. ST and KS drafted the manuscript.

Corresponding author

Correspondence to Kazunori Sango.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takaku, S., Yako, H., Niimi, N. et al. Establishment of a myelinating co-culture system with a motor neuron-like cell line NSC-34 and an adult rat Schwann cell line IFRS1. Histochem Cell Biol 149, 537–543 (2018). https://doi.org/10.1007/s00418-018-1649-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-018-1649-x

Keywords

Navigation