Skip to main content

Advertisement

Log in

High level of CTP synthase induces formation of cytoophidia in cortical neurons and impairs corticogenesis

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

De novo synthesis of the nucleotide CTP is catalyzed by the essential pyrimidine biosynthesis enzyme CTP synthase (CTPs), which forms large-scale filamentous structures consisting of CTPs termed cytoophidia in prokaryotes and in eukaryotes. Recent studies have shown that cytoophidia are abundant in neuroepithelial stem cells in Drosophila optic lobes and that overexpression of CTPs impairs optic lobe development. Whether CTPs and cytoophidia also play a role in the development of the mammalian cortex remains elusive. Here, we show that overexpression of CTPs by in utero electroporation in the embryonic mouse brain induces formation of cytoophidia in developing cortical neurons and impairs neuronal migration. In addition, the increase of cytoophidia accelerates neuronal differentiation and inhibits neural progenitor cell proliferation by reducing their mitotic activity. Furthermore, we discovered that the cytoophidia diffused during the early G1-phase of the cell cycle. Together, our findings show, for the first time, that CTPs play a significant role in the development of the mammalian cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aronow B, Ullman B (1987) In situ regulation of mammalian CTP synthetase by allosteric inhibition. J Biol Chem 262:5106–5112

    CAS  PubMed  Google Scholar 

  • Aughey GN et al (2014) Nucleotide synthesis is regulated by cytoophidium formation during neurodevelopment and adaptive metabolism. Biol Open 3:1045–1056. doi:10.1242/bio.201410165

    Article  PubMed  PubMed Central  Google Scholar 

  • Aughey GN, Grice SJ, Liu JL (2016) The interplay between Myc and CTP synthase in Drosophila. PLoS Genet 12:e1005867. doi:10.1371/journal.pgen.1005867

    Article  PubMed  PubMed Central  Google Scholar 

  • Azzam G, Liu JL (2013) Only one isoform of Drosophila melanogaster CTP synthase forms the cytoophidium. PLoS Genet 9:e1003256. doi:10.1371/journal.pgen.1003256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barry RM et al (2014) Large-scale filament formation inhibits the activity of CTP synthetase. Elife 16:03638

    Google Scholar 

  • Berry M, Rogers AW (1965) The migration of neuroblasts in the developing cerebral cortex. J Anat 99:691–709

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carcamo WC et al (2011) Induction of cytoplasmic rods and rings structures by inhibition of the CTP and GTP synthetic pathway in mammalian cells. PLoS ONE 6:e29690. doi:10.1371/journal.pone.0029690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen K, Zhang J, Tastan OY, Deussen ZA, Siswick MY, Liu JL (2011) Glutamine analogs promote cytoophidium assembly in human and Drosophila cells. J Genet Genom 38:391–402. doi:10.1016/j.jgg.2011.08.004

    Article  CAS  Google Scholar 

  • Cunningham JJ, Roussel MF (2001) Cyclin-dependent kinase inhibitors in the development of the central nervous system. Cell Growth Differ 12:387–396

    CAS  PubMed  Google Scholar 

  • Endrizzi JA, Kim H, Anderson PM, Baldwin EP (2005) Mechanisms of product feedback regulation and drug resistance in cytidine triphosphate synthetases from the structure of a CTP-inhibited complex. Biochemistry 44:13491–13499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farkas LM, Huttner WB (2008) The cell biology of neural stem and progenitor cells and its significance for their proliferation versus differentiation during mammalian brain development. Curr Opin Cell Biol 20:707–715. doi:10.1016/j.ceb.2008.09.008

    Article  CAS  PubMed  Google Scholar 

  • Florio M, Huttner WB (2014) Neural progenitors, neurogenesis and the evolution of the neocortex. Development 141:2182–2194. doi:10.1242/dev.090571

    Article  CAS  PubMed  Google Scholar 

  • Franco SJ, Gil-Sanz C, Martinez-Garay I, Espinosa A, Harkins-Perry SR, Ramos C, Muller U (2012) Fate-restricted neural progenitors in the mammalian cerebral cortex. Science 337:746–749. doi:10.1126/science.1223616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haubensak W, Attardo A, Denk W, Huttner WB (2004) Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc Natl Acad Sci USA 101:3196–3201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingerson-Mahar M, Briegel A, Werner JN, Jensen GJ, Gitai Z (2010) The metabolic enzyme CTP synthase forms cytoskeletal filaments. Nat Cell Biol 12:739–746. doi:10.1038/ncb2087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kriegstein AR (2005) Constructing circuits: neurogenesis and migration in the developing neocortex. Epilepsia 7:15–21

    Article  Google Scholar 

  • Kuzniecky RI (2006) Malformations of cortical development and epilepsy, part 1: diagnosis and classification scheme. Rev Neurol Dis 3:151–162

    PubMed  Google Scholar 

  • Liu JL (2010) Intracellular compartmentation of CTP synthase in Drosophila. J Genet Genom 37:281–296. doi:10.1016/S1673-8527(09)60046-1

    Article  CAS  Google Scholar 

  • Liu JL (2011) The enigmatic cytoophidium: compartmentation of CTP synthase via filament formation. BioEssays 33:159–164. doi:10.1002/bies.201000129

    Article  CAS  PubMed  Google Scholar 

  • McEvilly RJ, de Diaz MO, Schonemann MD, Hooshmand F, Rosenfeld MG (2002) Transcriptional regulation of cortical neuron migration by POU domain factors. Science 295:1528–1532

    Article  CAS  PubMed  Google Scholar 

  • Miyata T, Kawaguchi A, Saito K, Kawano M, Muto T, Ogawa M (2004) Asymmetric production of surface-dividing and non-surface-dividing cortical progenitor cells. Development 131:3133–3145

    Article  CAS  PubMed  Google Scholar 

  • Molyneaux BJ, Arlotta P, Menezes JR, Macklis JD (2007) Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci 8:427–437

    Article  CAS  PubMed  Google Scholar 

  • Noctor SC, Martinez-Cerdeno V, Ivic L, Kriegstein AR (2004) Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 7:136–144

    Article  CAS  PubMed  Google Scholar 

  • Noree C, Sato BK, Broyer RM, Wilhelm JE (2010) Identification of novel filament-forming proteins in Saccharomyces cerevisiae and Drosophila melanogaster. J Cell Biol 190:541–551. doi:10.1083/jcb.201003001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noree C, Monfort E, Shiau AK, Wilhelm JE (2014) Common regulatory control of CTP synthase enzyme activity and filament formation. Mol Biol Cell 25:2282–2290. doi:10.1091/mbc.E14-04-0912

    Article  PubMed  PubMed Central  Google Scholar 

  • Petrovska I et al (2014) Filament formation by metabolic enzymes is a specific adaptation to an advanced state of cellular starvation. Elife 25:02409

    Google Scholar 

  • Polleux F, Dehay C, Kennedy H (1997a) The timetable of laminar neurogenesis contributes to the specification of cortical areas in mouse isocortex. J Comp Neurol 385:95–116

    Article  CAS  PubMed  Google Scholar 

  • Polleux F, Dehay C, Moraillon B, Kennedy H (1997b) Regulation of neuroblast cell-cycle kinetics plays a crucial role in the generation of unique features of neocortical areas. J Neurosci 17:7763–7783

    CAS  PubMed  Google Scholar 

  • Pontious A, Kowalczyk T, Englund C, Hevner RF (2008) Role of intermediate progenitor cells in cerebral cortex development. Dev Neurosci 30:24–32

    Article  CAS  PubMed  Google Scholar 

  • Rakic P (1972) Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol 145:61–83

    Article  CAS  PubMed  Google Scholar 

  • Rakic P (1978) Neuronal migration and contact guidance in the primate telencephalon. Postgrad Med J 1:25–40

    Google Scholar 

  • Rakic P (2009) Evolution of the neocortex: a perspective from developmental biology. Nat Rev Neurosci 10:724–735. doi:10.1038/nrn2719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rakic P, Lombroso PJ (1998) Development of the cerebral cortex: I. Forming the cortical structure. J Am Acad Child Adolesc Psychiatry 37:116–117

    Article  CAS  PubMed  Google Scholar 

  • Sidman RL, Miale IL, Feder N (1959) Cell proliferation and migration in the primitive ependymal zone: an autoradiographic study of histogenesis in the nervous system. Exp Neurol 1:322–333

    Article  CAS  PubMed  Google Scholar 

  • Strochlic TI, Stavrides KP, Thomas SV, Nicolas E, O’Reilly AM, Peterson JR (2014) Ack kinase regulates CTP synthase filaments during Drosophila oogenesis. EMBO Rep 15:1184–1191. doi:10.15252/embr.201438688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugitani Y et al (2002) Brn-1 and Brn-2 share crucial roles in the production and positioning of mouse neocortical neurons. Genes Dev 16:1760–1765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabata H, Nakajima K (2001) Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex. Neuroscience 103:865–872

    Article  CAS  PubMed  Google Scholar 

  • Takahashi T, Nowakowski RS, Caviness VS Jr (1995) The cell cycle of the pseudostratified ventricular epithelium of the embryonic murine cerebral wall. J Neurosci 15:6046–6057

    CAS  PubMed  Google Scholar 

  • Tastan OY, Liu JL (2015) CTP synthase is required for optic lobe homeostasis in Drosophila. J Genet Genom 42:261–274. doi:10.1016/j.jgg.2015.04.006

    Article  Google Scholar 

  • Wang JT et al (2015) Src controls neuronal migration by regulating the activity of FAK and cofilin. Neuroscience 292:90–100

    Article  CAS  PubMed  Google Scholar 

  • Xie J et al (2016) Aberrant expression of LIMK1 impairs neuronal migration during neocortex development. Histochem Cell Biol. doi:10.1007/s00418-016-1514-8

    PubMed  Google Scholar 

  • Yang WL, McDonough VM, Ozier-Kalogeropoulos O, Adeline MT, Flocco MT, Carman GM (1994) Purification and characterization of CTP synthetase, the product of the URA7 gene in Saccharomyces cerevisiae. Biochemistry 33:10785–10793

    Article  CAS  PubMed  Google Scholar 

  • Zecevic N, Chen Y, Filipovic R (2005) Contributions of cortical subventricular zone to the development of the human cerebral cortex. J Comp Neurol 491:109–122

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31572477). We thank the Life Science Research Core Services (LSRCS) in Northwest A&F University for supplying the Leica TCS SP8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanting Zhao.

Ethics declarations

Conflict of interest

No conflict of interest exists in the submission of this manuscript and the manuscript was approved by all authors for publication. The manuscript does not contain clinical studies or patient data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Xie, J., Hei, M. et al. High level of CTP synthase induces formation of cytoophidia in cortical neurons and impairs corticogenesis. Histochem Cell Biol 149, 61–73 (2018). https://doi.org/10.1007/s00418-017-1612-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-017-1612-2

Keywords

Navigation