Advertisement

Histochemistry and Cell Biology

, Volume 148, Issue 5, pp 529–544 | Cite as

Targeting autophagy to modulate cell survival: a comparative analysis in cancer, normal and embryonic cells

  • Aleksandra Divac Rankov
  • Mila Ljujić
  • Marija Petrić
  • Dragica Radojković
  • Milica Pešić
  • Jelena Dinić
Original Paper

Abstract

Autophagy is linked to multiple cancer-related signaling pathways, and represents a defense mechanism for cancer cells under therapeutic stress. The crosstalk between apoptosis and autophagy is essential for both tumorigenesis and embryonic development. We studied the influence of autophagy on cell survival in pro-apoptotic conditions induced by anticancer drugs in three model systems: human cancer cells (NCI-H460, COR-L23 and U87), human normal cells (HaCaT and MRC-5) and zebrafish embryos (Danio rerio). Autophagy induction with AZD2014 and tamoxifen antagonized the pro-apoptotic effect of chemotherapeutics doxorubicin and cisplatin in cell lines, while autophagy inhibition by wortmannin and chloroquine synergized the action of both anticancer agents. This effect was further verified by assessing cleaved caspase-3 and PARP-1 levels. Autophagy inhibitors significantly increased both apoptotic markers when applied in combination with doxorubicin while autophagy inducers had the opposite effect. In a similar manner, autophagy induction in zebrafish embryos prevented cisplatin-induced apoptosis in the tail region while autophagy inhibition increased cell death in the tail and retina of cisplatin-treated animals. Autophagy modulation with direct inhibitors of the PI3kinase/Akt/mTOR pathway (AZD2014 and wortmannin) triggered the cellular response to anticancer drugs more effectively in NCI-H460 and zebrafish embryonic models compared to HaCaT suggesting that these modulators are selective towards rapidly proliferating cells. Therefore, evaluating the autophagic properties of chemotherapeutics could help determine more accurately the fate of different cell types under treatment. Our study underlines the importance of testing autophagic activity of potential anticancer agents in a comparative approach to develop more rational anticancer therapeutic strategies.

Keywords

Autophagy Apoptosis Caspase-3 PARP-1 Cancer cells Zebrafish 

Notes

Acknowledgements

This research was supported by Ministry of Education, Science and Technological Development of Serbia (Grant Nos. III41031 and 173008).

Compliance with ethical standards

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

418_2017_1590_MOESM1_ESM.pdf (5 mb)
Supplementary material 1 (PDF 5156 kb)

References

  1. Aburto MR, Hurle JM, Varela-Nieto I, Magarinos M (2012) Autophagy during vertebrate development. Cells 1(3):428–448. doi: 10.3390/cells1030428 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aredia F, Guaman Ortiz LM, Giansanti V, Scovassi AI (2012) Autophagy and cancer. Cells 1(3):520–534. doi: 10.3390/cells1030520 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Assinder SJ, Dong Q, Kovacevic Z, Richardson DR (2009) The TGF-beta, PI3 K/Akt and PTEN pathways: established and proposed biochemical integration in prostate cancer. Biochem J 417(2):411–421. doi: 10.1042/BJ20081610 CrossRefPubMedGoogle Scholar
  4. Avalos Y, Canales J, Bravo-Sagua R, Criollo A, Lavandero S, Quest AF (2014) Tumor suppression and promotion by autophagy. Biomed Res Int 2014:603980. doi: 10.1155/2014/603980 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Blommaart EF, Krause U, Schellens JP, Vreeling-Sindelarova H, Meijer AJ (1997) The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur J Biochem 243(1–2):240–246CrossRefPubMedGoogle Scholar
  6. Brand M, Heisenberg CP, Warga RM, Pelegri F, Karlstrom RO, Beuchle D, Picker A, Jiang YJ, Furutani-Seiki M, van Eeden FJ, Granato M, Haffter P, Hammerschmidt M, Kane DA, Kelsh RN, Mullins MC, Odenthal J, Nusslein-Volhard C (1996) Mutations affecting development of the midline and general body shape during zebrafish embryogenesis. Development 123:129–142PubMedGoogle Scholar
  7. Chakrabarti G (2015) Mutant KRAS associated malic enzyme 1 expression is a predictive marker for radiation therapy response in non-small cell lung cancer. Radiat Oncol 10:145. doi: 10.1186/s13014-015-0457-x CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55CrossRefPubMedGoogle Scholar
  9. Cole LK, Ross LS (2001) Apoptosis in the developing zebrafish embryo. Dev Biol 240(1):123–142. doi: 10.1006/dbio.2001.0432 CrossRefPubMedGoogle Scholar
  10. D’Amours D, Sallmann FR, Dixit VM, Poirier GG (2001) Gain-of-function of poly(ADP-ribose) polymerase-1 upon cleavage by apoptotic proteases: implications for apoptosis. J Cell Sci 114(Pt 20):3771–3778PubMedGoogle Scholar
  11. Detrich HW 3rd, Westerfield M, Zon LI (2010) The zebrafish: cellular and developmental biology, part A. Preface. Methods Cell Biol. doi: 10.1016/B978-0-12-384892-5.00018-9 PubMedGoogle Scholar
  12. Dietze EC, Troch MM, Bean GR, Heffner JB, Bowie ML, Rosenberg P, Ratliff B, Seewaldt VL (2004) Tamoxifen and tamoxifen ethyl bromide induce apoptosis in acutely damaged mammary epithelial cells through modulation of AKT activity. Oncogene 23(21):3851–3862. doi: 10.1038/sj.onc.1207480 CrossRefPubMedGoogle Scholar
  13. Eskelinen EL, Saftig P (2009) Autophagy: a lysosomal degradation pathway with a central role in health and disease. Biochim Biophys Acta 1793(4):664–673. doi: 10.1016/j.bbamcr.2008.07.014 CrossRefPubMedGoogle Scholar
  14. Fimia GM, Piacentini M (2010) Regulation of autophagy in mammals and its interplay with apoptosis. Cell Mol Life Sci 67(10):1581–1588. doi: 10.1007/s00018-010-0284-z CrossRefPubMedGoogle Scholar
  15. Furutani-Seiki M, Jiang YJ, Brand M, Heisenberg CP, Houart C, Beuchle D, van Eeden FJ, Granato M, Haffter P, Hammerschmidt M, Kane DA, Kelsh RN, Mullins MC, Odenthal J, Nusslein-Volhard C (1996) Neural degeneration mutants in the zebrafish, Danio rerio. Development 123:229–239PubMedGoogle Scholar
  16. Guichard SM, Curwen J, Bihani T, D’Cruz CM, Yates JW, Grondine M, Howard Z, Davies BR, Bigley G, Klinowska T, Pike KG, Pass M, Chresta CM, Polanska UM, McEwen R, Delpuech O, Green S, Cosulich SC (2015) AZD2014, an inhibitor of mTORC1 and mTORC2, is highly effective in ER+ breast cancer when administered using intermittent or continuous schedules. Mol Cancer Ther 14(11):2508–2518. doi: 10.1158/1535-7163.MCT-15-0365 CrossRefPubMedGoogle Scholar
  17. Guo JY, Chen HY, Mathew R, Fan J, Strohecker AM, Karsli-Uzunbas G, Kamphorst JJ, Chen G, Lemons JM, Karantza V, Coller HA, Dipaola RS, Gelinas C, Rabinowitz JD, White E (2011) Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev 25(5):460–470. doi: 10.1101/gad.2016311 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Halaby MJ, Kastein BK, Yang DQ (2013) Chloroquine stimulates glucose uptake and glycogen synthase in muscle cells through activation of Akt. Biochem Biophys Res Commun 435(4):708–713. doi: 10.1016/j.bbrc.2013.05.047 CrossRefPubMedGoogle Scholar
  19. Hippert MM, O’Toole PS, Thorburn A (2006) Autophagy in cancer: good, bad, or both? Cancer Res 66(19):9349–9351. doi: 10.1158/0008-5472.CAN-06-1597 CrossRefPubMedGoogle Scholar
  20. Inohara N, Nunez G (2000) Genes with homology to mammalian apoptosis regulators identified in zebrafish. Cell Death Differ 7(5):509–510. doi: 10.1038/sj.cdd.4400679 CrossRefPubMedGoogle Scholar
  21. Janji B, Viry E, Baginska J, Van Moer K, Berchem G (2013) Role of autophagy in cancer and tumor progression. In: Bailly Y (ed) Autophagy - a double-edged sword - cell survival or death? InTech. doi: 10.5772/55388
  22. Jeong EH, Choi HS, Lee TG, Kim HR, Kim CH (2012) Dual inhibition of PI3K/Akt/mTOR pathway and role of autophagy in non-small cell lung cancer cells. Tuberc Respir Dis (Seoul) 72(4):343–351CrossRefGoogle Scholar
  23. Lee E, Koo Y, Ng A, Wei Y, Luby-Phelps K, Juraszek A, Xavier RJ, Cleaver O, Levine B, Amatruda JF (2014) Autophagy is essential for cardiac morphogenesis during vertebrate development. Autophagy 10(4):572–587. doi: 10.4161/auto.27649 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Li J, Yuan J (2008) Caspases in apoptosis and beyond. Oncogene 27(48):6194–6206. doi: 10.1038/onc.2008.297 CrossRefPubMedGoogle Scholar
  25. Li J, Hou N, Faried A, Tsutsumi S, Kuwano H (2010) Inhibition of autophagy augments 5-fluorouracil chemotherapy in human colon cancer in vitro and in vivo model. Eur J Cancer 46(10):1900–1909. doi: 10.1016/j.ejca.2010.02.021 CrossRefPubMedGoogle Scholar
  26. Liu D, Yang Y, Liu Q, Wang J (2011) Inhibition of autophagy by 3-MA potentiates cisplatin-induced apoptosis in esophageal squamous cell carcinoma cells. Med Oncol 28(1):105–111. doi: 10.1007/s12032-009-9397-3 CrossRefPubMedGoogle Scholar
  27. Livesey KM, Tang D, Zeh HJ, Lotze MT (2009) Autophagy inhibition in combination cancer treatment. Curr Opin Investig Drugs 10(12):1269–1279PubMedGoogle Scholar
  28. Looyenga BD, Hutchings D, Cherni I, Kingsley C, Weiss GJ, Mackeigan JP (2012) STAT3 is activated by JAK2 independent of key oncogenic driver mutations in non-small cell lung carcinoma. PLoS One 7(2):e30820. doi: 10.1371/journal.pone.0030820 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Martinet W, Agostinis P, Vanhoecke B, Dewaele M, De Meyer GR (2009) Autophagy in disease: a double-edged sword with therapeutic potential. Clin Sci (Lond) 116(9):697–712. doi: 10.1042/CS20080508 CrossRefGoogle Scholar
  30. Mathew R, Karantza-Wadsworth V, White E (2007) Role of autophagy in cancer. Nat Rev Cancer 7(12):961–967. doi: 10.1038/nrc2254 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Matsushima H, Yonemura K, Ohishi K, Hishida A (1998) The role of oxygen free radicals in cisplatin-induced acute renal failure in rats. J Lab Clin Med 131(6):518–526CrossRefPubMedGoogle Scholar
  32. Meijer AJ, Codogno P (2004) Regulation and role of autophagy in mammalian cells. Int J Biochem Cell Biol 36(12):2445–2462. doi: 10.1016/j.biocel.2004.02.002 CrossRefPubMedGoogle Scholar
  33. Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140(3):313–326. doi: 10.1016/j.cell.2010.01.028 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Ng SS, Tsao MS, Nicklee T, Hedley DW (2001) Wortmannin inhibits pkb/akt phosphorylation and promotes gemcitabine antitumor activity in orthotopic human pancreatic cancer xenografts in immunodeficient mice. Clin Cancer Res 7(10):3269–3275PubMedGoogle Scholar
  35. Ou HC, Raible DW, Rubel EW (2007) Cisplatin-induced hair cell loss in zebrafish (Danio rerio) lateral line. Hear Res 233(1–2):46–53. doi: 10.1016/j.heares.2007.07.003 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Parng C (2005) In vivo zebrafish assays for toxicity testing. Curr Opin Drug Discov Devel 8(1):100–106PubMedGoogle Scholar
  37. Pommier Y, Leo E, Zhang H, Marchand C (2010) DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol 17(5):421–433. doi: 10.1016/j.chembiol.2010.04.012 CrossRefPubMedGoogle Scholar
  38. Sasore T, Kennedy B (2014) Deciphering combinations of PI3K/AKT/mTOR pathway drugs augmenting anti-angiogenic efficacy in vivo. PLoS One 9(8):e105280. doi: 10.1371/journal.pone.0105280 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Scarlatti F, Bauvy C, Ventruti A, Sala G, Cluzeaud F, Vandewalle A, Ghidoni R, Codogno P (2004) Ceramide-mediated macroautophagy involves inhibition of protein kinase B and up-regulation of beclin 1. J Biol Chem 279(18):18384–18391. doi: 10.1074/jbc.M313561200 CrossRefPubMedGoogle Scholar
  40. Smith DG, Sturmey RG (2013) Parallels between embryo and cancer cell metabolism. Biochem Soc Trans 41(2):664–669. doi: 10.1042/BST20120352 CrossRefPubMedGoogle Scholar
  41. Spangler JB, Manzari MT, Rosalia EK, Chen TF, Wittrup KD (2012) Triepitopic antibody fusions inhibit cetuximab-resistant BRAF and KRAS mutant tumors via EGFR signal repression. J Mol Biol 422(4):532–544. doi: 10.1016/j.jmb.2012.06.014 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Spears LD, Tran AV, Qin CY, Hobbs SB, Burns CA, Royer NK, Zhang Z, Ralston L, Fisher JS (2016) Chloroquine increases phosphorylation of AMPK and Akt in myotubes. Heliyon 2(3):e00083. doi: 10.1016/j.heliyon.2016.e00083 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Stern ST, Adiseshaiah PP, Crist RM (2012) Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Part Fibre Toxicol 9:20. doi: 10.1186/1743-8977-9-20 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Tanida I, Minematsu-Ikeguchi N, Ueno T, Kominami E (2005) Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy. Autophagy 1(2):84–91CrossRefPubMedGoogle Scholar
  45. Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267(5203):1456–1462CrossRefPubMedGoogle Scholar
  46. Uribe PM, Mueller MA, Gleichman JS, Kramer MD, Wang Q, Sibrian-Vazquez M, Strongin RM, Steyger PS, Cotanche DA, Matsui JI (2013) Dimethyl sulfoxide (DMSO) exacerbates cisplatin-induced sensory hair cell death in zebrafish (Danio rerio). PLoS One 8(2):e55359. doi: 10.1371/journal.pone.0055359 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Varga M, Sass M, Papp D, Takacs-Vellai K, Kobolak J, Dinnyes A, Klionsky DJ, Vellai T (2014) Autophagy is required for zebrafish caudal fin regeneration. Cell Death Differ 21(4):547–556. doi: 10.1038/cdd.2013.175 CrossRefPubMedGoogle Scholar
  48. Westerfield M (2000) The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio). University of Oregon Press, EugeneGoogle Scholar
  49. Yang S, Wang X, Contino G, Liesa M, Sahin E, Ying H, Bause A, Li Y, Stommel JM, Dell’antonio G, Mautner J, Tonon G, Haigis M, Shirihai OS, Doglioni C, Bardeesy N, Kimmelman AC (2011) Pancreatic cancers require autophagy for tumor growth. Genes Dev 25(7):717–729. doi: 10.1101/gad.2016111 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Yu SW, Wang H, Poitras MF, Coombs C, Bowers WJ, Federoff HJ, Poirier GG, Dawson TM, Dawson VL (2002) Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297(5579):259–263. doi: 10.1126/science.1072221 CrossRefPubMedGoogle Scholar
  51. Yu CC, Huang HB, Hung SK, Liao HF, Lee CC, Lin HY, Li SC, Ho HC, Hung CL, Su YC (2016) AZD2014 radio sensitizes oral squamous cell carcinoma by inhibiting AKT/mTOR axis and inducing G1/G2/M cell cycle arrest. PLoS One 11(3):e0151942. doi: 10.1371/journal.pone.0151942 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Zhang S, Wang C, Tang S, Deng S, Zhou Y, Dai C, Yang X, Xiao X (2014) Inhibition of autophagy promotes caspase-mediated apoptosis by tunicamycin in HepG2 cells. Toxicol Mech Methods 24(9):654–665. doi: 10.3109/15376516.2014.956915 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institute of Molecular Genetics and Genetic EngineeringUniversity of BelgradeBelgradeSerbia
  2. 2.Institute for Biological Research “Siniša Stanković”, Department of NeurobiologyUniversity of BelgradeBelgradeSerbia

Personalised recommendations