Advertisement

Histochemistry and Cell Biology

, Volume 148, Issue 5, pp 503–515 | Cite as

Adipose tissue-derived stromal cells (ADSC) express oligodendrocyte and myelin markers, but they do not function as oligodendrocytes

  • Lara Vellosillo
  • Maria Paz Muñoz
  • Carlos Luis Paíno
Original Paper

Abstract

Mesenchymal cells cultured from the vasculo-stromal fraction of adipose tissue (ADSC) show adult stem cell characteristics and several groups have claimed generating neural cells from them. However, we have observed that many markers commonly used for the identification of neural cells are spontaneously expressed by ADSC in culture. In the present study, we have examined the expression of characteristic oligodendrocyte molecules in cultured ADSC, aiming to test if myelinating cells could be generated from accessible non-neural adult tissues. In basal growth conditions, rat ADSC spontaneously expressed CNPase, MBP, MOG, protein zero, GAP43, Sox10, and Olig2, as shown by immunocytrochemistry and western blot. A small population of cultured ADSC expressed membrane galactocerebroside (O1 antibody), but no cell stained with O4 antibody. RT-PCR analyses showed the expression of CNPase, MBP, DM20, and low levels of Olig2, Sox10, and Sox2 mRNA by rat ADSC. When rat ADSC were treated with combinations of factors commonly used in neural-inducing media (retinoic acid, dbcAMP, EGF, basic FGF, NT3, and/or PDGF), the number of O1-positive cells changed, but in no case, mRNA expression of Sox10 and Olig2 transcription factors approached CNS oligodendrocyte levels. In co-culture with rat dorsal root ganglion neurons, no sign of axonal myelination by rat ADSC was observed. These studies show that the expression of oligodendrocyte traits by cultured ADSC is not a proof of functional competence as oligodendroglia and suggest that in culture conditions, ADSC acquire intermediate, uncommitted phenotypes.

Keywords

Mesenchymal stem cells Oligodendrocyte Galactocerebroside Myelin proteins Myelination in culture 

Abbreviations

ADSC

Adipose tissue-derived stromal cells

CNPase

2′,3′-Cyclic-nucleotide 3′-phosphodiesterase

DRG

Dorsal root ganglion

GalC

Galactocerebroside, galactosylceramide

GAP43

Growth-associated protein

MSC

Mesenchymal stem cells

MBP

Myelin basic protein

MOG

Myelin oligodendrocyte glycoprotein

NG2

Neural/glial antigen 2 (chondroitin sulfate proteoglycan 4)

p75NTR

Low-affinity NGF receptor, p75

P0

Myelin protein zero

PLP1

Myelin proteolipid protein

Notes

Acknowledgements

We thank the help of Prof. M.V. Toledo-Lobo in various parts of the study and in S.M. Fig. 6, of Dr. E. Rodríguez-Martín in cytometry included in S.M. Fig. 8 and of Drs. M.L. Hernández-Bule and M.A. Martínez in ADSC multipotentiality tests. This work was supported by the Agencia Laín Entralgo, Comunidad de Madrid NDG09/14 and Project VEXEM 2014/0023.

Author contributions

LV designed and performed experiments and data analysis and contributed with manuscript writing. MPM performed experiments. CLP coordinated the study, designed and performed experiments and data analysis, and wrote the manuscript.

Compliance with ethical standards

Conflicts of interest

The authors declare no potential conflicts of interest.

Supplementary material

418_2017_1588_MOESM1_ESM.pdf (23.9 mb)
Supplementary material 1 (PDF 24,461 kb)

References

  1. Al Jumah MA, Abumaree MH (2012) The immunomodulatory and neuroprotective effects of mesenchymal stem cells (MSCs) in experimental autoimmune encephalomyelitis (EAE): a model of multiple sclerosis (MS). Int J Mol Sci 13(7):9298–9331. doi: 10.3390/ijms13079298 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bai L, Lennon DP, Caplan AI, DeChant A, Hecker J, Kranso J, Zaremba A, Miller RH (2012) Hepatocyte growth factor mediates mesenchymal stem cell-induced recovery in multiple sclerosis models. Nat Neurosci 15(6):862–870. doi: 10.1038/nn.3109 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bansal R, Warrington AE, Gard AL, Ranscht B, Pfeiffer SE (1989) Multiple and novel specificities of monoclonal antibodies O1, O4, and R-mAb used in the analysis of oligodendrocyte development. J Neurosci Res 24(4):548–557. doi: 10.1002/jnr.490240413 CrossRefPubMedGoogle Scholar
  4. Barnabe GF, Schwindt TT, Calcagnotto ME, Motta FL, Martinez G Jr, de Oliveira AC, Keim LM, D’Almeida V, Mendez-Otero R, Mello LE (2009) Chemically-induced RAT mesenchymal stem cells adopt molecular properties of neuronal-like cells but do not have basic neuronal functional properties. PLoS One 4(4):e5222. doi: 10.1371/journal.pone.0005222 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bernardo ME, Fibbe WE (2013) Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell 13(4):392–402. doi: 10.1016/j.stem.2013.09.006 CrossRefPubMedGoogle Scholar
  6. Blondheim NR, Levy YS, Ben-Zur T, Burshtein A, Cherlow T, Kan I, Barzilai R, Bahat-Stromza M, Barhum Y, Bulvik S, Melamed E, Offen D (2006) Human mesenchymal stem cells express neural genes, suggesting a neural predisposition. Stem Cells Dev 15(2):141–164. doi: 10.1089/scd.2006.15.141 CrossRefPubMedGoogle Scholar
  7. Braun J, Kurtz A, Barutcu N, Bodo J, Thiel A, Dong J (2013) Concerted regulation of CD34 and CD105 accompanies mesenchymal stromal cell derivation from human adventitial stromal cell. Stem Cells Dev 22(5):815–827. doi: 10.1089/scd.2012.0263 CrossRefPubMedGoogle Scholar
  8. Choi YS, Vincent LG, Lee AR, Dobke MK, Engler AJ (2012) Mechanical derivation of functional myotubes from adipose-derived stem cells. Biomaterials 33(8):2482–2491. doi: 10.1016/j.biomaterials.2011.12.004 CrossRefPubMedGoogle Scholar
  9. Deloulme JC, Janet T, Au D, Storm DR, Sensenbrenner M, Baudier J (1990) Neuromodulin (GAP43): a neuronal protein kinase C substrate is also present in 0-2A glial cell lineage. Characterization of neuromodulin in secondary cultures of oligodendrocytes and comparison with the neuronal antigen. J Cell Biol 111(4):1559–1569CrossRefPubMedGoogle Scholar
  10. Deng J, Petersen BE, Steindler DA, Jorgensen ML, Laywell ED (2006) Mesenchymal stem cells spontaneously express neural proteins in culture and are neurogenic after transplantation. Stem Cells 24(4):1054–1064CrossRefPubMedGoogle Scholar
  11. Dhar S, Yoon ES, Kachgal S, Evans GR (2007) Long-term maintenance of neuronally differentiated human adipose tissue-derived stem cells. Tissue Eng 13(11):2625–2632CrossRefPubMedGoogle Scholar
  12. Di Rocco G, Iachininoto MG, Tritarelli A, Straino S, Zacheo A, Germani A, Crea F, Capogrossi MC (2006) Myogenic potential of adipose-tissue-derived cells. J Cell Sci 119(14):2945–2952. doi: 10.1242/jcs.03029 CrossRefPubMedGoogle Scholar
  13. Dori I, Petrakis S, Giannakopoulou A, Bekiari C, Grivas I, Siska EK, Koliakos G, Papadopoulos GC (2016) Seven days post-injury fate and effects of genetically labelled adipose-derived mesenchymal cells on a rat traumatic brain injury experimental model. Histol Histopathol. doi: 10.14670/hh-11-864 PubMedGoogle Scholar
  14. Fanarraga ML, Sommer I, Griffiths IR (1995) O-2A progenitors of the mouse optic nerve exhibit a developmental pattern of antigen expression different from the rat. Glia 15(2):95–104. doi: 10.1002/glia.440150202 CrossRefPubMedGoogle Scholar
  15. Foudah D, Redondo J, Caldara C, Carini F, Tredici G, Miloso M (2012) Expression of neural markers by undifferentiated rat mesenchymal stem cells. J Biomed Biotechnol. doi: 10.1155/2012/820821 PubMedPubMedCentralGoogle Scholar
  16. Fox LE, Shen J, Ma K, Liu Q, Shi G, Pappas GD, Qu T, Cheng J (2010) Membrane properties of neuron-like cells generated from adult human bone-marrow-derived mesenchymal stem cells. Stem Cells Dev 19(12):1831–1841. doi: 10.1089/scd.2010.0089 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gebler A, Zabel O, Seliger B (2012) The immunomodulatory capacity of mesenchymal stem cells. Trends Mol Med 18(2):128–134. doi: 10.1016/j.molmed.2011.10.004 CrossRefPubMedGoogle Scholar
  18. Gillard BK, Thurmon LT, Marcus DM (1993) Variable subcellular localization of glycosphingolipids. Glycobiology 3(1):57–67CrossRefPubMedGoogle Scholar
  19. Gordon D, Pavlovska G, Uney JB, Wraith DC, Scolding NJ (2010) Human mesenchymal stem cells infiltrate the spinal cord, reduce demyelination, and localize to white matter lesions in experimental autoimmune encephalomyelitis. J Neuropathol Exp Neurol 69(11):1087–1095. doi: 10.1097/NEN.0b013e3181f97392 CrossRefPubMedGoogle Scholar
  20. Hao P, Liang Z, Piao H, Ji X, Wang Y, Liu Y, Liu R, Liu J (2014) Conditioned medium of human adipose-derived mesenchymal stem cells mediates protection in neurons following glutamate excitotoxicity by regulating energy metabolism and GAP-43 expression. Metab Brain Dis 29(1):193–205. doi: 10.1007/s11011-014-9490-y CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hermann A, Gastl R, Liebau S, Popa MO, Fiedler J, Boehm BO, Maisel M, Lerche H, Schwarz J, Brenner R, Storch A (2004) Efficient generation of neural stem cell-like cells from adult human bone marrow stromal cells. J Cell Sci 117(19):4411–4422. doi: 10.1242/jcs.01307 CrossRefPubMedGoogle Scholar
  22. Hermann A, Liebau S, Gastl R, Fickert S, Habisch HJ, Fiedler J, Schwarz J, Brenner R, Storch A (2006) Comparative analysis of neuroectodermal differentiation capacity of human bone marrow stromal cells using various conversion protocols. J Neurosci Res 83(8):1502–1514. doi: 10.1002/jnr.20840 CrossRefPubMedGoogle Scholar
  23. Jaatinen L, Salemi S, Miettinen S, Hyttinen J, Eberli D (2015) The combination of electric current and copper promotes neuronal differentiation of adipose-derived stem cells. Ann Biomed Eng 43(4):1014–1023. doi: 10.1007/s10439-014-1132-3 CrossRefPubMedGoogle Scholar
  24. Jang S, Cho HH, Cho YB, Park JS, Jeong HS (2010) Functional neural differentiation of human adipose tissue-derived stem cells using bFGF and forskolin. BMC Cell Biol 11:25. doi: 10.1186/1471-2121-11-25 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kang SK, Putnam LA, Ylostalo J, Popescu IR, Dufour J, Belousov A, Bunnell BA (2004) Neurogenesis of Rhesus adipose stromal cells. J Cell Sci 117(18):4289–4299CrossRefPubMedGoogle Scholar
  26. Lamoury FM, Croitoru-Lamoury J, Brew BJ (2006) Undifferentiated mouse mesenchymal stem cells spontaneously express neural and stem cell markers Oct-4 and Rex-1. Cytotherapy 8(3):228–242CrossRefPubMedGoogle Scholar
  27. Leite C, Silva NT, Mendes S, Ribeiro A, de Faria JP, Lourenco T, dos Santos F, Andrade PZ, Cardoso CM, Vieira M, Paiva A, da Silva CL, Cabral JM, Relvas JB, Graos M (2014) Differentiation of human umbilical cord matrix mesenchymal stem cells into neural-like progenitor cells and maturation into an oligodendroglial-like lineage. PLoS One 9(10):e111059. doi: 10.1371/journal.pone.0111059 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Li H, He Y, Richardson WD, Casaccia P (2009) Two-tier transcriptional control of oligodendrocyte differentiation. Curr Opin Neurobiol 19(5):479–485. doi: 10.1016/j.conb.2009.08.004 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lopatina T, Kalinina N, Karagyaur M, Stambolsky D, Rubina K, Revischin A, Pavlova G, Parfyonova Y, Tkachuk V (2011) Adipose-derived stem cells stimulate regeneration of peripheral nerves: BDNF secreted by these cells promotes nerve healing and axon growth de novo. PLoS One 6(3):e17899. doi: 10.1371/journal.pone.0017899 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Mattar P, Bieback K (2015) Comparing the immunomodulatory properties of bone marrow, adipose tissue, and birth-associated tissue mesenchymal stromal cells. Front Immunol 6:560. doi: 10.3389/fimmu.2015.00560 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Mithen FA, Wood PM, Agrawal HC, Bunge RP (1983) Immunohistochemical study of myelin sheaths formed by oligodendrocytes interacting with dissociated dorsal root ganglion neurons in culture. Brain Res 262(1):63–69CrossRefPubMedGoogle Scholar
  32. Mizuno H, Zuk PA, Zhu M, Lorenz HP, Benhaim P, Hedrick MH (2002) Myogenic differentiation by human processed lipoaspirate cells. Plast Reconstr Surg 109(1):199–209CrossRefPubMedGoogle Scholar
  33. Moradi F, Haji Ghasem Kashani M, Ghorbanian MT, Lashkarbolouki T (2012) Spontaneous expression of neurotrophic factors and TH, Nurr1, nestin genes in long-term culture of bone marrow mesenchymal stem cells. Cell J 13(4):243–250PubMedGoogle Scholar
  34. Najm FJ, Lager AM, Zaremba A, Wyatt K, Caprariello AV, Factor DC, Karl RT, Maeda T, Miller RH, Tesar PJ (2013) Transcription factor-mediated reprogramming of fibroblasts to expandable, myelinogenic oligodendrocyte progenitor cells. Nat Biotechnol 31(5):426–433. doi: 10.1038/nbt.2561 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45CrossRefPubMedPubMedCentralGoogle Scholar
  36. Safford KM, Hicok KC, Safford SD, Halvorsen YD, Wilkison WO, Gimble JM, Rice HE (2002) Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem Biophys Res Commun 294(2):371–379CrossRefPubMedGoogle Scholar
  37. Schwerk A, Altschuler J, Roch M, Gossen M, Winter C, Berg J, Kurtz A, Akyuz L, Steiner B (2015) Adipose-derived human mesenchymal stem cells induce long-term neurogenic and anti-inflammatory effects and improve cognitive but not motor performance in a rat model of Parkinson’s disease. Regen Med 10(4):431–446. doi: 10.2217/rme.15.17 CrossRefPubMedGoogle Scholar
  38. Sommer I, Schachner M (1981) Monoclonal antibodies (O1 to O4) to oligodendrocyte cell surfaces: an immunocytological study in the central nervous system. Dev Biol 83(2):311–327CrossRefPubMedGoogle Scholar
  39. Tondreau T, Lagneaux L, Dejeneffe M, Massy M, Mortier C, Delforge A, Bron D (2004) Bone marrow-derived mesenchymal stem cells already express specific neural proteins before any differentiation. Differentiation 72(7):319–326CrossRefPubMedGoogle Scholar
  40. Uccelli A, Laroni A, Freedman MS (2013) Mesenchymal stem cells as treatment for MS—progress to date. Mult Scler 19(5):515–519. doi: 10.1177/1352458512464686 CrossRefPubMedGoogle Scholar
  41. Vellosillo L, Munoz MP, Lobo MVT, Paino CL (2013) Multiple neural markers are spontaneously expressed by human adipose tissue-derived stromal cells (ADSCs) in culture. Hum Gene Ther 24(12):A92Google Scholar
  42. Yang N, Zuchero JB, Ahlenius H, Marro S, Ng YH, Vierbuchen T, Hawkins JS, Geissler R, Barres BA, Wernig M (2013) Generation of oligodendroglial cells by direct lineage conversion. Nat Biotechnol 31(5):434–439. doi: 10.1038/nbt.2564 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2):211–228. doi: 10.1089/107632701300062859 CrossRefPubMedGoogle Scholar
  44. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12):4279–4295CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© European Union 2017

Authors and Affiliations

  • Lara Vellosillo
    • 1
  • Maria Paz Muñoz
    • 1
  • Carlos Luis Paíno
    • 1
  1. 1.Servicio de Neurobiología-InvestigaciónIRYCIS, Hospital Universitario Ramón y CajalMadridSpain

Personalised recommendations