Histochemistry and Cell Biology

, Volume 148, Issue 5, pp 557–567 | Cite as

Experimentally induced intrauterine growth restriction in rabbits leads to differential remodelling of left versus right ventricular myocardial microstructure

  • Julia Schipke
  • Anna Gonzalez-Tendero
  • Lidia Cornejo
  • Alper Willführ
  • Bart Bijnens
  • Fatima Crispi
  • Christian Mühlfeld
  • Eduard Gratacós
Original Paper


Intrauterine growth restriction (IUGR) is associated with foetal cardiac remodelling and dysfunction together with increased risk of cardiovascular disease in adulthood. Experimental data concerning effects of IUGR on cardiomyocyte and microvascularization anatomy are inconsistent and it is unknown whether both ventricles are similarly susceptible to in utero undersupply. Foetal IUGR was induced in pregnant rabbits at 25 days of gestation by selective ligation of uteroplacental vessels. Foetal echocardiography showed systolic and diastolic dysfunction of both ventricles and body and heart weight were significantly reduced in response to IUGR. Design-based stereology revealed a decrease in cardiomyocyte number in both ventricles which was only in the left ventricle accompanied by a significantly higher cardiomyocyte mean volume. The proportion of mono- and bi-nucleated cardiomyocytes was unaltered between the groups indicating a similar maturation status. The number and length of cardiac capillaries in IUGR offspring was diminished in left but not in right ventricles. Foetal left and right ventricles are differently affected by placental insufficiency. While cardiomyocyte numbers are diminished in both ventricles, hypertrophic remodelling of cardiomyocytes and alterations in microvascularization is rather a left ventricular adaptation to IUGR. These unequal structural changes may be related to loading and developmental differences of the left and right ventricles.


IUGR Cardiomyocyte number Microvascularization Ventricle-related 



 The authors wish to thank Susanne Kuhlmann and Christa Lichtenberg for expert technical assistance. This work was partially supported by the German Research Federation (DFG: REBIRTH Cluster of Excellence), Grants from Instituto de Salud Carlos III (Grants Number PI14/00226, PI15/00130 and INT16/00168), the Spanish Ministry of Economy and Competitiveness (Grant TIN2014-52923-R) and cofinanced by the Fondo Europeo de Desarrollo Regional de la Unión Europea “Una manera de hacer Europa” (FEDER), and AGAUR 2014 SGR Grant No. 928. The research leading to these results has received funding from Obra Social “la Caixa” Foundation and CEREBRA.


  1. Alberry M, Soothill P (2007) Management of fetal growth restriction. Arch Dis Child Fetal Neonatal Ed 92:F62–F67. doi: 10.1136/adc.2005.082297 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bae S, Xiao Y, Li G, Casiano CA, Zhang L (2003) Effect of maternal chronic hypoxic exposure during gestation on apoptosis in fetal rat heart. Am J Physiol Heart Circ Physiol 285:H983–H990. doi: 10.1152/ajpheart.00005.2003 CrossRefPubMedGoogle Scholar
  3. Barker DJ, Osmond C, Golding J, Kuh D, Wadsworth ME (1989) Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. BMJ 298:564–567CrossRefPubMedPubMedCentralGoogle Scholar
  4. Baschat AA, Gembruch U (2002) Evaluation of the fetal coronary circulation. Ultrasound Obstet Gynecol 20:405–412. doi: 10.1046/j.1469-0705.2002.00798.x CrossRefPubMedGoogle Scholar
  5. Baschat AA, Gembruch U, Reiss I, Gortner L, Diedrich K (1997) Demonstration of fetal coronary blood flow by Doppler ultrasound in relation to arterial and venous flow velocity waveforms and perinatal outcome—the ‘heart-sparing effect’. Ultrasound Obstet Gynecol 9:162–172. doi: 10.1046/j.1469-0705.1997.09030162.x CrossRefPubMedGoogle Scholar
  6. Bernstein IM, Horbar JD, Badger GJ, Ohlsson A, Golan A (2000) Morbidity and mortality among very-low-birth-weight neonates with intrauterine growth restriction. The Vermont Oxford Network. Am J Obstet Gynecol 182:198–206CrossRefPubMedGoogle Scholar
  7. Botting KJ, McMillen IC, Forbes H, Nyengaard JR, Morrison JL (2014) Chronic hypoxemia in late gestation decreases cardiomyocyte number but does not change expression of hypoxia-responsive genes. J Am Heart Assoc. doi: 10.1161/JAHA.113.000531 PubMedPubMedCentralGoogle Scholar
  8. Breisch EA, Houser SR, Carey RA, Spann JF, Bove AA (1980) Myocardial blood flow and capillary density in chronic pressure overload of the feline left ventricle. Cardiovasc Res 14:469–475CrossRefPubMedGoogle Scholar
  9. Bruel A, Nyengaard JR (2005) Design-based stereological estimation of the total number of cardiac myocytes in histological sections. Basic Res Cardiol 100:311–319. doi: 10.1007/s00395-005-0524-9 CrossRefPubMedGoogle Scholar
  10. Bubb KJ, Cock ML, Black MJ, Dodic M, Boon WM, Parkington HC, Harding R, Tare M (2007) Intrauterine growth restriction delays cardiomyocyte maturation and alters coronary artery function in the fetal sheep. J Physiol 578:871–881. doi: 10.1113/jphysiol.2006.121160 CrossRefPubMedGoogle Scholar
  11. Buckingham M, Meilhac S, Zaffran S (2005) Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 6:826–835. doi: 10.1038/nrg1710 CrossRefPubMedGoogle Scholar
  12. Chaoui R (2004) Coronary arteries in fetal life: physiology, malformations and the “heart-sparing effect”. Acta Paediatr Suppl 93:6–12CrossRefPubMedGoogle Scholar
  13. Chen J, Yaniz-Galende E, Kagan HJ, Liang L, Hekmaty S, Giannarelli C, Hajjar R (2015) Abnormalities of capillary microarchitecture in a rat model of coronary ischemic congestive heart failure. Am J Physiol Heart Circ Physiol 308:H830–H840. doi: 10.1152/ajpheart.00583.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Comas M, Crispi F, Cruz-Martinez R, Martinez JM, Figueras F, Gratacos E (2010) Usefulness of myocardial tissue Doppler vs conventional echocardiography in the evaluation of cardiac dysfunction in early-onset intrauterine growth restriction. Am J Obstet Gynecol 203:45–47. doi: 10.1016/j.ajog.2010.02.044 CrossRefPubMedGoogle Scholar
  15. Corstius HB, Zimanyi MA, Maka N, Herath T, Thomas W, van der Laarse A, Wreford NG, Black MJ (2005) Effect of intrauterine growth restriction on the number of cardiomyocytes in rat hearts. Pediatr Res 57:796–800. doi: 10.1203/01.PDR.0000157726.65492.CD CrossRefPubMedGoogle Scholar
  16. Crispi F, Bijnens B, Figueras F, Bartrons J, Eixarch E, Le NF, Ahmed A, Gratacos E (2010) Fetal growth restriction results in remodeled and less efficient hearts in children. Circulation 121:2427–2436. doi: 10.1161/CIRCULATIONAHA.110.937995 CrossRefPubMedGoogle Scholar
  17. Crispi F, Bijnens B, Sepulveda-Swatson E, Cruz-Lemini M, Rojas-Benavente J, Gonzalez-Tendero A, Garcia-Posada R, Rodriguez-Lopez M, Demicheva E, Sitges M, Gratacos E (2014) Postsystolic shortening by myocardial deformation imaging as a sign of cardiac adaptation to pressure overload in fetal growth restriction. Circ Cardiovasc Imaging 7:781–787. doi: 10.1161/CIRCIMAGING.113.001490 CrossRefPubMedGoogle Scholar
  18. Eixarch E, Figueras F, Hernandez-Andrade E, Crispi F, Nadal A, Torre I, Oliveira S, Gratacos E (2009) An experimental model of fetal growth restriction based on selective ligature of uteroplacental vessels in the pregnant rabbit. Fetal Diagn Ther 26:203–211. doi: 10.1159/000264063 CrossRefPubMedGoogle Scholar
  19. Eixarch E, Hernandez-Andrade E, Crispi F, Illa M, Torre I, Figueras F, Gratacos E (2011) Impact on fetal mortality and cardiovascular Doppler of selective ligature of uteroplacental vessels compared with undernutrition in a rabbit model of intrauterine growth restriction. Placenta 32:304–309. doi: 10.1016/j.placenta.2011.01.014 CrossRefPubMedGoogle Scholar
  20. Figueras F, Gratacos E (2014) Update on the diagnosis and classification of fetal growth restriction and proposal of a stage-based management protocol. Fetal Diagn Ther 36:86–98. doi: 10.1159/000357592 CrossRefPubMedGoogle Scholar
  21. Hauton D, Ousley V (2009) Prenatal hypoxia induces increased cardiac contractility on a background of decreased capillary density. BMC Cardiovasc Disord 9:1. doi: 10.1186/1471-2261-9-1 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hecher K, Snijders R, Campbell S, Nicolaides K (1995) Fetal venous, intracardiac, and arterial blood flow measurements in intrauterine growth retardation: relationship with fetal blood gases. Am J Obstet Gynecol 173:10–15CrossRefPubMedGoogle Scholar
  23. Iruretagoyena JI, Gonzalez-Tendero A, Garcia-Canadilla P, Amat-Roldan I, Torre I, Nadal A, Crispi F, Gratacos E (2014) Cardiac dysfunction is associated with altered sarcomere ultrastructure in intrauterine growth restriction. Am J Obstet Gynecol 210:550–557. doi: 10.1016/j.ajog.2014.01.023 CrossRefPubMedGoogle Scholar
  24. Kiserud T, Acharya G (2004) The fetal circulation. Prenat Diagn 24:1049–1059. doi: 10.1002/pd.1062 CrossRefPubMedGoogle Scholar
  25. Lim K, Zimanyi MA, Black MJ (2006) Effect of maternal protein restriction in rats on cardiac fibrosis and capillarization in adulthood. Pediatr Res 60:83–87. doi: 10.1203/01.pdr.0000220361.08181.c3 CrossRefPubMedGoogle Scholar
  26. Louey S, Jonker SS, Giraud GD, Thornburg KL (2007) Placental insufficiency decreases cell cycle activity and terminal maturation in fetal sheep cardiomyocytes. J Physiol 580:639–648. doi: 10.1113/jphysiol.2006.122200 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Master JS, Zimanyi MA, Yin KV, Moritz KM, Gallo LA, Tran M, Wlodek ME, Black MJ (2014) Transgenerational left ventricular hypertrophy and hypertension in offspring after uteroplacental insufficiency in male rats. Clin Exp Pharmacol Physiol 41:884–890. doi: 10.1111/1440-1681.12303 CrossRefPubMedGoogle Scholar
  28. Mayhew TM, Charnock-Jones DS, Kaufmann P (2004a) Aspects of human fetoplacental vasculogenesis and angiogenesis. III. Changes in complicated pregnancies. Placenta 25:127–139. doi: 10.1016/j.placenta.2003.10.010 CrossRefPubMedGoogle Scholar
  29. Mayhew TM, Wijesekara J, Baker PN, Ong SS (2004b) Morphometric evidence that villous development and fetoplacental angiogenesis are compromised by intrauterine growth restriction but not by pre-eclampsia. Placenta 25:829–833. doi: 10.1016/j.placenta.2004.04.011 CrossRefPubMedGoogle Scholar
  30. Mendez J, Keys A (1960) Density and composition of mammalian muscle. Metabolism 9:184–188Google Scholar
  31. Morrison JL, Botting KJ, Dyer JL, Williams SJ, Thornburg KL, McMillen IC (2007) Restriction of placental function alters heart development in the sheep fetus. Am J Physiol Regul Integr Comp Physiol 293:R306–R313. doi: 10.1152/ajpregu.00798.2006 CrossRefPubMedGoogle Scholar
  32. Mühlfeld C (2014) Quantitative morphology of the vascularisation of organs: a stereological approach illustrated using the cardiac circulation. Ann Anat 196:12–19. doi: 10.1016/j.aanat.2012.10.010 CrossRefPubMedGoogle Scholar
  33. Mühlfeld C, Nyengaard JR, Mayhew TM (2010) A review of state-of-the-art stereology for better quantitative 3D morphology in cardiac research. Cardiovasc Pathol 19:65–82. doi: 10.1016/j.carpath.2008.10.015 CrossRefPubMedGoogle Scholar
  34. Olson EN (2006) Gene regulatory networks in the evolution and development of the heart. Science 313:1922–1927. doi: 10.1126/science.1132292 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Porrello ER, Widdop RE, Delbridge LM (2008) Early origins of cardiac hypertrophy: does cardiomyocyte attrition programme for pathological ‘catch-up’ growth of the heart? Clin Exp Pharmacol Physiol 35:1358–1364. doi: 10.1111/j.1440-1681.2008.05036.x CrossRefPubMedGoogle Scholar
  36. Rudolph AM (1970) The changes in the circulation after birth. Their importance in congenital heart disease. Circulation 41:343–359CrossRefPubMedGoogle Scholar
  37. Schipke J, Banmann E, Nikam S, Voswinckel R, Kohlstedt K, Loot AE, Fleming I, Muhlfeld C (2014) The number of cardiac myocytes in the hypertrophic and hypotrophic left ventricle of the obese and calorie-restricted mouse heart. J Anat 225:539–547. doi: 10.1111/joa.12236 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Schipke J, Roloff K, Kuhn M, Muhlfeld C (2015) Systemic, but not cardiomyocyte-specific, deletion of the natriuretic peptide receptor guanylyl cyclase A increases cardiomyocyte number in neonatal mice. Histochem Cell Biol 144:365–375. doi: 10.1007/s00418-015-1337-z CrossRefPubMedGoogle Scholar
  39. Sterio DC (1984) The unbiased estimation of number and sizes of arbitrary particles using the disector. J Microsc 134:127–136CrossRefPubMedGoogle Scholar
  40. Thornburg KL, Reller MD (1999) Coronary flow regulation in the fetal sheep. Am J Physiol 277:R1249–R1260PubMedGoogle Scholar
  41. Thornburg K, Jonker S, O’Tierney P, Chattergoon N, Louey S, Faber J, Giraud G (2011) Regulation of the cardiomyocyte population in the developing heart. Prog Biophys Mol Biol 106:289–299. doi: 10.1016/j.pbiomolbio.2010.11.010 CrossRefPubMedGoogle Scholar
  42. Wang KC, Brooks DA, Summers-Pearce B, Bobrovskaya L, Tosh DN, Duffield JA, Botting KJ, Zhang S, Caroline MI, Morrison JL (2015) Low birth weight activates the renin-angiotensin system, but limits cardiac angiogenesis in early postnatal life. Physiol Rep. doi: 10.14814/phy2.12270 Google Scholar
  43. Weibel ER (1979) Stereological methods. Practical methods for biological morphometry, vol 1. Academic Press, New YorkGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Julia Schipke
    • 1
    • 2
    • 6
  • Anna Gonzalez-Tendero
    • 3
  • Lidia Cornejo
    • 3
  • Alper Willführ
    • 1
  • Bart Bijnens
    • 4
    • 5
  • Fatima Crispi
    • 3
  • Christian Mühlfeld
    • 1
    • 2
    • 6
  • Eduard Gratacós
    • 3
  1. 1.Institute of Functional and Applied AnatomyHannover Medical SchoolHannoverGermany
  2. 2.Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy)HannoverGermany
  3. 3.Fetal i+D Fetal Medicine Research Center, BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), ICGON, IDIBAPS, Centre for Biomedical Research on Rare Diseases (CIBER-ER)University of BarcelonaBarcelonaSpain
  4. 4.ICREABarcelonaSpain
  5. 5.Universitat Pompeu FabraBarcelonaSpain
  6. 6.Member of the German Center for Lung Research (DZL)Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH)HannoverGermany

Personalised recommendations