Histochemistry and Cell Biology

, Volume 146, Issue 4, pp 421–430 | Cite as

A simple solution for antibody signal enhancement in immunofluorescence and triple immunogold assays

  • Abraham Rosas-Arellano
  • Juan B. Villalobos-González
  • Lourdes Palma-Tirado
  • Felipe A. Beltrán
  • Alfonso Cárabez-Trejo
  • Fanis Missirlis
  • Maite A. Castro
Original Paper

Abstract

Immunolocalization techniques are standard in biomedical research. Tissue fixation with aldehydes and cell membrane permeabilization with detergents can distort the specific binding of antibodies to their high affinity epitopes. In immunofluorescence protocols, it is desirable to quench the sample’s autofluorescence without reduction of the antibody-dependent signal. Here we show that adding glycine to the blocking buffer and diluting the antibodies in a phosphate saline solution containing glycine, Triton X-100, Tween20 and hydrogen peroxide increase the specific antibody signal in tissue immunofluorescence and immunogold electron microscopy. This defined antibody signal enhancer (ASE) solution gives similar results to the commercially available Pierce Immunostain Enhancer (PIE). Furthermore, prolonged tissue incubation in resin and fixative and application of ASE or PIE are described in an improved protocol for triple immunogold electron microscopy that is used to show co-localization of GABA-A ρ2 and dopamine D2 receptors in GFAP-positive astrocytes in the mouse striatum. The addition of glycine, Triton X-100, Tween20 and hydrogen peroxide during antibody incubation steps is recommended in immunohistochemistry methods.

Keywords

Background staining Confocal Fluorescence Immunohistochemistry Signal-to-noise ratio Transmission electron microscopy 

Supplementary material

418_2016_1447_MOESM1_ESM.pptx (43.4 mb)
Supplementary material 1 (PPTX 44413 kb)
418_2016_1447_MOESM2_ESM.docx (11 kb)
Supplementary material 2 (DOCX 11 kb)

References

  1. Bal A, Bachelot T, Savasta M, Manier M, Verna JM, Benabid AL, Feuerstein C (1994) Evidence for dopamine D2 receptor mRNA expression by striatal astrocytes in culture: in situ hybridization and polymerase chain reaction studies. Mol Brain Res 23:204–212CrossRefPubMedGoogle Scholar
  2. Bhattacharyya D, Hammond AT, Glick BS (2010) High-quality immunofluorescence of cultured cells. Methods Mol Biol 619:403–410. doi:10.1007/978-1-60327-412-8_24 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Biedermann B, Frohlich E, Grosche J, Wagner HJ, Reichenbach A (1995) Mammalian Muller (glial) cells express functional D2 dopamine receptors. NeuroReport 6:609–612CrossRefPubMedGoogle Scholar
  4. Bosman FT (1983) Some recent developments in immunocytochemistry. Histochem J 15:189–200CrossRefPubMedGoogle Scholar
  5. Brandtzaeg P (1994) Immunohistochemistry more than a staining method. Tidsskr Nor Laegeforen 114:2381–2385PubMedGoogle Scholar
  6. Chen X, Cho DB, Yang PC (2010) Double staining immunohistochemistry. N Am J Med Sci 5:241–245. doi:10.4297/najms.2010.2241 Google Scholar
  7. Doerr-Schott J, Lichte CM (1986) A triple ultrastructural immunogold staining method. Application to the simultaneous demonstration of three hypophyseal hormones. J Histochem Cytochem 34:1101–1104CrossRefPubMedGoogle Scholar
  8. Dowson JH (1983) Autofluorescence emission spectra of neuronal lipopigment in a case of adult-onset ceroidosis (Kufs’ disease). Acta Neuropathol 59:241–245CrossRefPubMedGoogle Scholar
  9. Ellis SL, Williams B, Asquith S, Bertoncello I, Nilsson SK (2009) An innovative triple immunogold labeling method to investigate the hemopoietic stem cell niche in situ. Microsc Microanal 15:403–414. doi:10.1017/S1431927609990924 CrossRefPubMedGoogle Scholar
  10. Fogerson SM, van Brummen AJ, Busch DJ, Allen SR, Roychaudhuri R, Banks SM, Klärner FG, Schrader T, Bitan G, Morgan JR (2016) Reducing synuclein accumulation improves neuronal survival after spinal cord injury. Exp Neurol 278:105–115. doi:10.1016/j.expneurol.2016.02.004 CrossRefPubMedGoogle Scholar
  11. Ghrebi SS, Owen GR, Brunette DM (2007) Triton X-100 pretreatment of LR-white thin sections improves immunofluorescence specificity and intensity. Microsc Res Tech 70:555–562. doi:10.1002/jemt.20422 CrossRefPubMedGoogle Scholar
  12. Gosselin EJ, Cate CC, Pettengill OS, Sorenson GD (1986) Immunocytochemistry: its evolution and criteria for its application in the study of epon-embedded cells and tissue. Am J Anat 175:135–160. doi:10.1002/aja.1001750205 CrossRefPubMedGoogle Scholar
  13. Govender D, Davids LM, Kidson SH (2006) Immunofluorescent identification of melanocytes in murine hair follicles. J Mol Histol 37:1–3CrossRefPubMedGoogle Scholar
  14. Gräber MB, Kreutzberg GW (1985) Immuno gold staining (IGS) for electron microscopical demonstration of glial fibrillary acidic (GFA) protein in LR white embedded tissue. Histochemistry 83:497–500. doi:10.1007/BF00492450 CrossRefPubMedGoogle Scholar
  15. Griffiths G, Lucocq JM (2014) Antibodies for immunolabeling by light and electron microscopy: not for the faint hearted. Histochem Cell Biol 142:347–360. doi:10.1007/s00418-014-1263-5 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Guha PP, David SA, Ghosh CC (2014) Detecting Tie2, an endothelial growth factor receptor, by using immunohistochemistry in mouse lungs. Methods Mol Biol 1172:201–208. doi:10.1007/978-1-4939-0928-5_18 CrossRefPubMedGoogle Scholar
  17. Gundersen V, Chaudhry FA, Bjaalie JG, Fonnum F, Ottersen OP, Storm-Mathisen J (1998) Synaptic vesicular localization and exocytosis of L-aspartate in excitatory nerve terminals: a quantitative immunogold analysis in rat hippocampus. J Neurosci 18:6059–6070PubMedGoogle Scholar
  18. Hagedorn M, Neuhaus EM, Soldati T (2006) Optimized fixation and immunofluorescence staining methods for Dictyostelium cells. Methods Mol Biol 346:327–338. doi:10.1385/1-59745-144-4:327 PubMedGoogle Scholar
  19. Harvey VL, Duguid IC, Krasel C, Stephens GJ (2006) Evidence that GABA rho subunits contribute to functional ionotropic GABA receptors in mouse cerebellar Purkinje cells. J Physiol 577:127–139. doi:10.1113/jphysiol.2006.112482 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Huang SN, Minassian H, More JD (1976) Application of immunofluorescent staining on paraffin sections improved by trypsin digestion. Lab Invest 35:383–390PubMedGoogle Scholar
  21. Imam SA, Young L, Chaiwun B, Taylor CR (1995) Comparison of two microwave based antigen-retrieval solutions in unmasking epitopes in formalin-fixed tissue for immunostaining. Anticancer Res 15:1153–1158PubMedGoogle Scholar
  22. Inoue M, Wakayama Y, Murahashi M, Shibuya S, Jimi T, Kojima H, Oniki H (1996) Electron microscopic observations of triple immunogold labelling for dystrophin, beta-dystroglycan and adhalin in human skeletal myofibers. Acta Neuropathol 92:569–575CrossRefPubMedGoogle Scholar
  23. Jamur MC, Oliver C (2010) Permeabilization of cell membranes. Methods Mol Biol 588:63–66. doi:10.1007/978-1-59745-324-0_9 CrossRefPubMedGoogle Scholar
  24. Khan ZU, Koulen P, Rubinstein M, Grandy DK, Goldman-Rakic PS (2001) An astroglia-linked dopamine D2-receptor action in prefrontal cortex. Proc Natl Acad Sci USA 98:1964–1969. doi:10.1073/pnas.98.4.1964 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Liu H, Kao WW (2009) A novel protocol of whole mount electro-immunofluorescence staining. Mol Vis 15:505–517PubMedPubMedCentralGoogle Scholar
  26. Martinez-Delgado G et al (2011) Dynamics of GABArho2 receptors in retinal bipolar neurons and cerebellar astrocytes. NeuroReport 22:4–9CrossRefPubMedGoogle Scholar
  27. Mavrakis M, Pourquie O, Lecuit T (2010) Lighting up developmental mechanisms: how fluorescence imaging heralded a new era. Development 137:373–387. doi:10.1242/dev.031690 CrossRefPubMedGoogle Scholar
  28. Miledi R, Eusebi F, Martínez-Torres A, Palma E, Trettel F (2002) Expression of functional neurotransmitter receptors in Xenopus oocytes after injection of human brain membranes. Proc Natl Acad Sci USA 99:13238–13242. doi:10.1073/pnas.192445299 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Miller DM, Shakes DC (1995) Immunofluorescence microscopy. Methods Cell Biol 48:365–394CrossRefPubMedGoogle Scholar
  30. Ming CH, Fan YS (1988) Enhancement of anti-phospholipid antibody activity by Tween 20. J Immunol Methods 109:253–255CrossRefPubMedGoogle Scholar
  31. Mukai H, Eto H, Nishiyama S, Hashimoto K (1988) Differential staining of skin-limited amyloid and colloid bodies with immunofluorescence after pretreatments. J Invest Dermatol 90:520–525CrossRefPubMedGoogle Scholar
  32. Ohsaki Y, Maeda T, Fujimoto T (2005) Fixation and permeabilization protocol is critical for the immunolabeling of lipid droplet proteins. Histochem Cell Biol 124:445–452. doi:10.1007/s00418-005-0061-5 CrossRefPubMedGoogle Scholar
  33. Petriz A, Reyes-Haro D, Gonzalez-Gonzalez MA, Miledi R, Martinez-Torres A (2014) GABArho subunits confer a bicuculline-insensitive component to GFAP+ cells of cerebellum. Proc Natl Acad Sci USA 111:17522–17527. doi:10.1073/pnas.1419632111 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Reyes-Haro D, Gonzalez-Gonzalez MA, Petriz A, Rosas-Arellano A, Kettenmann H, Miledi R, Martinez-Torres A (2013a) gamma-Aminobutyric acid-rho expression in ependymal glial cells of the mouse cerebellum. J Neurosci Res 91:527–534. doi:10.1002/jnr.23183 CrossRefPubMedGoogle Scholar
  35. Reyes-Haro D, Rosas-Arellano A, Gonzalez-Gonzalez MA, Mora-Loyola E, Miledi R, Martinez-Torres A (2013b) GABArho expression in the medial nucleus of the trapezoid body. Neurosci Lett 532:23–28. doi:10.1016/j.neulet.2012.10.024 CrossRefPubMedGoogle Scholar
  36. Rosas-Arellano A, Parodi J, Machuca-Parra AI, Sanchez-Gutierrez A, Inestrosa NC, Miledi R, Martinez-Torres A (2011) The GABA(A)rho receptors in hippocampal spontaneous activity and their distribution in hippocampus, amygdala and visual cortex. Neurosci Lett 500:20–25. doi:10.1016/j.neulet.2011.05.235 CrossRefPubMedGoogle Scholar
  37. Rosas-Arellano A, Machuca-Parra AI, Reyes-Haro D, Miledi R, Martinez-Torres A (2012) Expression of GABArho receptors in the neostriatum: localization in aspiny, medium spiny neurons and GFAP-positive cells. J Neurochem 122:900–910. doi:10.1111/j.1471-4159.2011.07621.x CrossRefPubMedGoogle Scholar
  38. Rosas-Arellano A, Vasquez-Procopio J, Gambis A, Blowes LM, Steller H, Mollereau B, Missirlis F (2016) Ferritin assembly in enterocytes of Drosophila melanogaster. Int J Mol Sci. 17:27 doi:10.3390/ijms17020027 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Schnell SA, Staines WA, Wessendorf MW (1999) Reduction of lipofuscin-like autofluorescence in fluorescently labeled tissue. J Histochem Cytochem 47:719–730CrossRefPubMedGoogle Scholar
  40. Shi SR, Key ME, Kalra KL (1991) Antigen retrieval in formalin-fixed, paraffin-embedded tissues: an enhancement method for immunohistochemical staining based on microwave oven heating of tissue sections. J Histochem Cytochem 39:741–748CrossRefPubMedGoogle Scholar
  41. Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59:223–239CrossRefPubMedGoogle Scholar
  42. Skepper JN, Powell JM (2008) Immunogold staining of London Resin (LR) White sections for transmission electron microscopy (TEM). CSH Protoc 1:pdb.prot5016. doi:10.1101/pdb.prot5016 Google Scholar
  43. Sohn J et al (2015) The subventricular zone continues to generate corpus callosum and rostral migratory stream astroglia in normal adult mice. J Neurosci 35:3756–3763. doi:10.1523/JNEUROSCI.3454-14.2015 CrossRefPubMedGoogle Scholar
  44. Wakayama Y, Inoue M, Kojima H, Murahashi M, Shibuya S, Oniki H (2001) Localization of sarcoglycan, neuronal nitric oxide synthase, beta-dystroglycan, and dystrophin molecules in normal skeletal myofiber: triple immunogold labeling electron microscopy. Microsc Res Tech 55:154–163. doi:10.1002/jemt.1166 CrossRefPubMedGoogle Scholar
  45. Waldvogel HJ, Curtis MA, Baes K, Rees MI, Faull RL (2006) Immunohistochemical staining of post-mortem adult human brain sections. Nat Protoc 1:2719–2732. doi:10.1038/nprot.2006.354 CrossRefPubMedGoogle Scholar
  46. Wollman AJ, Nudd R, Hedlund EG, Leake MC (2015) From Animaculum to single molecules: 300 years of the light microscope. Open Biol 5:150019. doi:10.1098/rsob.150019 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Instituto de Bioquímica y Microbiología, Facultad de CienciasUniversidad Austral de ChileValdiviaChile
  2. 2.Center for Interdisciplinary Studies on the Nervous System (CISNe)Universidad Austral de ChileValdiviaChile
  3. 3.Unidad de Microscopía, Instituto de NeurobiologíaUniversidad Nacional Autónoma de MéxicoQuerétaroMéxico
  4. 4.Departamento de Fisiología, Biofísica y NeurocienciasCinvestav del IPN, Unidad ZacatencoCiudad de MéxicoMéxico

Personalised recommendations