Abstract
The development of thymocytes and generation of mature T cells is a complex process that requires spatio-temporal interactions of thymocytes with the other cells of the thymus microenvironment. Recently, mesenchymal stromal cells were isolated from the neonatal human thymus and differentiated into chondrogenic, osteogenic, and adipogenic lineages, just like their bone marrow counterparts. However, their function in thymocyte homeostasis is unknown. In our autologous co-cultures of rat mesenchymal stromal cells and thymocytes, the stromal cells preserve the viability of cultured thymocytes and stimulate the development of CD4−CD8− double-negative and the maturation of mainly CD4+ single-positive thymocytes. Thymocytes also influence the stemness of bone marrow mesenchymal stromal cells, as their expression of CD44, a marker associated with cellular proliferation and migration, is reduced in co-cultures. Mesenchymal stromal cells’ influence on thymocyte development requires direct physical contact between the two cells and is not mediated by a soluble factor. When the two types of cells were physically separated, the stimulative effects of mesenchymal stromal cells on thymocytes did not occur. Electron microscopy confirmed the close contact between the membranes of thymocytes and mesenchymal stromal cells. Our experiments suggest that membrane exchanges could occur between mesenchymal stromal cells and thymocytes, such as the transfer of CD44 from mesenchymal stromal cells to the thymocytes, but its functional significance for thymocytes development remains to be established. These results suggest that mesenchymal stromal cells could normally be a part of the in vivo thymic microenvironment and form a niche that could sustain and guide the development of thymocytes.
Similar content being viewed by others
Abbreviations
- DMEM:
-
Dulbecco’s modified Eagle’s medium
- FCS:
-
Fetal calf serum
- PBS:
-
Phosphate-buffered saline
- BMSCs:
-
Bone marrow-derived mesenchymal stromal cells
- DN:
-
CD4−CD8− double-negative thymocytes
- DP:
-
CD4+CD8+ double-positive thymocytes
- CD4+ SP:
-
CD4+ single-positive thymocytes
- CD8+ SP:
-
CD8+ single-positive thymocytes
- TCR:
-
T cell receptor
- FSC:
-
Forward scatter
- SSC:
-
Side scatter
- qPCR:
-
Real-time (quantitative) polymerase chain reaction
- TEM:
-
Transmission electron microscopy
- SEM:
-
Scanning electron microscopy
References
Alexandropoulos K, Danzl NM (2012) Thymic epithelial cells: antigen presenting cells that regulate T cell repertoire and tolerance development. Immunol Res 54:177–190
Anderson SJ, Levin SD, Perlmutter RM (1993) Protein tyrosine kinase p56lck controls allelic exclusion of T-cell receptor beta-chain genes. Nature 365:552–554
Barda-Saad M, Rozenszajn LA, Ashush H, Shav-Tal Y, Ben Nun A, Zipori D (1999) Adhesion molecules involved in the interactions between early T cells and mesenchymal bone marrow stromal cells. Exp Hematol 27:834–844
Biddle A, Gammon L, Fazil B, Mackenzie IC (2013) CD44 staining of cancer stem-like cells is influenced by down-regulation of CD44 variant isoforms and up-regulation of the standard CD44 isoform in the population of cells that have undergone epithelial-to-mesenchymal transition. PLoS ONE 8:e57314
Boumaza I, Srinivasan S, Witt WT, Feghali-Bostwick C, Dai Y, Garcia-Ocana A, Feili-Hariri M (2009) Autologous bone marrow-derived rat mesenchymal stem cells promote PDX-1 and insulin expression in the islets, alter T cell cytokine pattern and preserve regulatory T cells in the periphery and induce sustained normoglycemia. J Autoimmun 32:33–42
Brocker T (1999) The role of dendritic cells in T cell selection and survival. J Leukoc Biol 66:331–335
Budd RC, Cerottini JC, MacDonald HR (1987) Phenotypic identification of memory cytolytic T lymphocytes in a subset of Lyt-2+ cells. J Immunol 138:1009–1013
Ceredig R, Rolink T (2002) A positive look at double-negative thymocytes. Nat Rev Immunol 2:888–897
Chen YT, Sun CK, Lin YC, Chang LT, Chen YL, Tsai TH, Chung SY, Chua S, Kao YH, Yen CH, Shao PL, Chang KC, Leu S, Yip HK (2011) Adipose-derived mesenchymal stem cell protects kidneys against ischemia-reperfusion injury through suppressing oxidative stress and inflammatory reaction. J Transl Med. 5:51
Cone RE, Sprent J, Marchalonis JJ (1972) Antigen-binding specificity of isolated cell-surface immunoglobulin from thymus cells activated to histocompatibility antigens. Proc Natl Acad Sci USA 69:2556–2560
Daubeuf S, Aucher A, Bordier C, Salles A, Serre L, Gaibelet G, Faye JC, Favre G, Joly E, Hudrisier D (2010) Preferential transfer of certain plasma membrane proteins onto T and B cells by trogocytosis. PLoS ONE 5:8716
Davis DM (2007) Intercellular transfer of cell-surface proteins is common and can affect many stages of an immune response. Nat Rev Immunol 7:238–243
Freedman AR, Zhu H, Levine JD, Kalams S, Scadden DT (1996) Generation of human T lymphocytes from bone marrow CD34+cells in vitro. Nat Med 2:46–51
Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP (1968) Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6:230–247
Gameiro J, Nagib P, Verinaud L (2010) The thymus microenvironment in regulating thymocyte differentiation. Cell Adhes Migr 4:382–390
Ghannam S, Bouffi C, Djouad F, Jorgensen C, Noël D (2010) Immunosuppression by mesenchymal stem cells: mechanisms and clinical applications. Stem Cell Res Ther 1:2–8
Godfrey DI, Kennedy J, Suda T, Zlotnik A (1993) A developmental pathway involving four phenotypically and functionally distinct subsets of CD3-CD4-CD8- triple-negative adult mouse thymocytes defined by CD44 and CD25 expression. J Immunol 150:4244–4252
Graham VA, Marzo AL, Tough DF (2007) A role for CD44 in T cell development and function during direct competition between CD44+ and CD44− cells. Eur J Immunol 37:925–934
Gray DH, Seach N, Ueno T, Milton MK, Liston A, Lew AM, Goodnow CC, Boyd RL (2006) Developmental kinetics, turnover, and stimulatory capacity of thymic epithelial cells. Blood 108:3777–3785
Hayat MA (2000) Principles and techniques of electron microscopy: biological applications. Cambridge University Press, London
Hoogduijn MJ (2015) Are mesenchymal stromal cells immune cells? Arthritis Res Ther 17:88
Hudrisier D, Riond J, Mazarguil H, Gairin JE, Joly E (2001) Cutting edge: CTLs rapidly capture membrane fragments from target cells in a TCR signaling-dependent manner. J Immunol 166:3645–3649
Hünig T, Torres-Nagel N, Mehling B, Park HJ, Herrmann T (2001) Thymic development and repertoire selection: the rat perspective. Immunol Rev 184:7–19
Jun-qi G, Xia G, Zhi-jie L, Wei-zhen W, Liang-hu H, Hui-yue D, Jin C, Jun L, Yun-fen F, Jin W, Yu-jie M, Xiao-wen C, Zhi-xian W, Fu-qiang H, Shun-liang Y, Lian-ming L, Feng Z, Jian-ming T (2013) BMSCs reduce rat granulosa cell apoptosis induced by cisplatin and perimenopause. BMC Cell Biol 14:18
Kidwai F, Costea DE, Hutchison I, Mackenzie I (2013) The effects of CD44 down-regulation on stem cell properties of head and neck cancer cell lines. J Oral Pathol Med 42:682–690
Komada Y, Yamane T, Kadota D, Isono K, Takakura N, Hayashi S, Yamazaki H (2012) Origins and properties of dental. Thymic, and bone marrow mesenchymal cells and their stem cells. PLoS ONE 7:46436
Krampera M, Sartoris S, Liotta F, Pasini A, Angeli R, Cosmi L, Andreini A, Mosna F, Bonetti B, Rebellato E, Testi MG, Frosali F, Pizzolo G, Tridente G, Maggi E, Romagnani S, Annunziato F (2007) Immune regulation by mesenchymal stem cells derived from adult spleen and thymus. Stem Cells Dev 16:797–810
Lee CK, Kim JK, Kim Y, Lee MK, Kim K, Kang JK, Hofmeister R, Durum SK, Han SS (2001) Generation of macrophages from early T progenitors in vitro. J Immunol 166:5964–5969
Li Y, Zhang F, Nagai N, Tang Z, Zhang S, Scotney P, Lennartsson L, Zhu C, Qu Y, Fang C, Hua J, Matsuo O, Fong GH, Ding H, Cao Y, Becker KG, Nash A, Heldin CH, Li X (2008) VEGF-B inhibits apoptosis via VEGFR-1-mediated suppression of the expression of BH3-only protein genes in mice and rats. J Clin Invest 118:913–923
Minguell JJ, Conget P, Erices A (2000) Biology and clinical utilization of mesenchymal progenitor cells. Braz J Med Biol Res 33:881–887
Muller-Reichard T, Verkade P (2012) Correlative light and electron microscopy, 1st edn. Science Academic Press, New York
Nam K, Oh S, Lee KM, Yoo SA, Shin I (2015) CD44 regulates cell proliferation, migration, and invasion via modulation of c-Src transcription in human breast cancer cells. Cell Signal 27:1882–1894
Ordodi VL, Mic FA, Mic AA, Tanasie G, Ionac M, Sandesc D, Paunescu V (2006) Bone marrow aspiration from rats: a minimally invasive procedure. Lab Anim 35:41–44
Osborne DG, Wetzel SA (2012) Trogocytosis results in sustained intracellular signaling in CD4(+) T cells. J Immunol 189:4728–4739
Puaux AL, Campanaud J, Salles A, Préville X, Timmerman B, Joly E, Hudrisier D (2006) A very rapid and simple assay based on trogocytosis to detect and measure specific T and B cell reactivity by flow cytometry. Eur J Immunol 36:779–788
Rajasagi M, Marhaba R, Vitacolonna M, Zöller M (2010) Thymocyte expansion and maturation: crosstalk of CD44v6 on thymocytes and panCD44 on stroma cells. Immunol Cell Biol 88:136–147
Rzhaninova AA, Gornostaeva SN, Goldshtein DV (2005) Isolation and phenotypical characterization of mesenchymal stem cells from human fetal thymus. Bull Exp Biol Med 139:134–140
Savion S, Itoh T, Hertogs H, Shoham J (1989) Contact-mediated maturational effects of thymic stromal cells on murine thymocytes in culture. Immunology 67:496–501
Spees JL, Olson SD, Whitney MJ, Prockop DJ (2006) Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci USA 103:1283–1288
Suniara RK, Jenkinson EJ, Owen JJ (2000) An essential role for thymic mesenchyme in early T cell development. J Exp Med 191:1051–1056
Takahama Y (2006) Journey through the thymus: stromal guides for T-cell development and selection. Nat Rev Immunol 6:127–135
Tsai PT, Lee RA, Wu H (2003) BMP4 acts upstream of FGF in modulating thymic stroma and regulating thymopoiesis. Blood 102:3947–3953
Tso GH, Law HK, Tu W, Chan GC, Lau YL (2010) Phagocytosis of apoptotic cells modulates mesenchymal stem cells osteogenic differentiation to enhance IL-17 and RANKL expression on CD4+ T cells. Stem Cells 28:939–954
Wu L, Kincade PW, Shortman K (1993) The CD44 expressed on the earliest intrathymic precursor population functions as a thymus homing molecule but does not bind to hyaluronate. Immunol Lett 38:69–75
Yeoman H, Gress RE, Bare CV, Leary AG, Boyse EA, Bard J, Shultz LD, Harris DT, DeLuca D (1993) Human bone marrow and umbilical cord blood cells generate CD4+ and CD8+ single-positive T cells in murine fetal thymus organ culture. Proc Natl Acad Sci 90:10778–10782
Zhang JC, Zheng GF, Wu L, Ou Yang LY, Li WX (2014) Bone marrow mesenchymal stem cells overexpressing human basic fibroblast growth factor increase vasculogenesis in ischemic rats. Braz J Med Biol Res 47:886–894
Zhu H, Mitsuhashi N, Klein A, Barsky LW, Weinberg K, Barr ML, Demetriou A, Wu GD (2006) The role of the hyaluronan receptor CD44 in mesenchymal stem cell migration in the extracellular matrix. Stem Cells 24:928–935
Acknowledgments
This work was supported by a Grant of the Romanian National Authority for Scientific Research, CNCS—UEFISCDI, Project Number PN-II-ID-PCE-2011-3-0571, awarded to FAM. DVN was co-financed from the European Social Fund through Sectorial Operational Programme Human Resources Development 2007–2013, project number POSDRU/CPP107/DMI 1.5/S/77082, “Doctoral Scholarships for eco-economy and bio-economic complex training to ensure the food and feed safety and security of anthropogenic ecosystems.” This paper is partly supported by the Sectorial Operational Programme Human Resources Development (SOPHRD), financed by the European Social Fund and the Romanian Government under contract number POSDRU 141531. MS was supported by the strategic grant POSDRU/159/1.5/S/133391, Project “Doctoral and Post-doctoral programs of excellence for highly qualified human resources training for research in the field of Life sciences, Environment and Earth Science” co-financed by the European Social Fund within the Sectorial Operational Program Human Resources Development 2007–2013.
Author information
Authors and Affiliations
Corresponding author
Additional information
Seyed Mohammad Reza Azghadi and Maria Suciu have contributed equally to the manuscript and should be considered first authors.
Rights and permissions
About this article
Cite this article
Azghadi, S.M.R., Suciu, M., Gruia, A.T. et al. Mesenchymal stromal cells support the viability and differentiation of thymocytes through direct contact in autologous co-cultures. Histochem Cell Biol 146, 153–165 (2016). https://doi.org/10.1007/s00418-016-1430-y
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00418-016-1430-y