Skip to main content
Log in

Visualization of the glomerular endothelial glycocalyx by electron microscopy using cationic colloidal thorium dioxide

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Biological material itself appears with poor contrast in electron microscopy (EM), due to its composition mostly of light elements. Classical staining agents such as osmium tetroxide, uranyl acetate, and lead citrate preserve and/or stain cellular structures such as membranes, cytoplasm, and organelles well for EM. However, extracellular polymeric substances (EPS) show no or only poor contrast with these staining agents. The endothelial glycocalyx in blood vessels consists mainly of proteoglycans. It can be visualized by EM only by additional staining with heavy metal ions such as copper (Alcian blue, cupromeronic blue), ruthenium (ruthenium red), or lanthanum. Best results are achieved by combined perfusion of fixative and stain. Cationic hydrous thorium dioxide colloids (named here cThO2) trace acidic groups in EPS. We describe here the use of cThO2 to visualize the glomerular endothelial glycocalyx in the mouse kidney. cThO2 shows high electron density and binds to a continuous layer of up to a few hundred nanometers thickness on the glomerular endothelium, as well as on epithelia in other blood vessels in perfused animals. The observed staining pattern gives rise to periodic densities, with a spacing varying between 50 and 200 nm, depending on the overall layer thickness, which varies between below 50 up to 300 nm. Due to high electron density of the used cThO2 particles, the introduced method allows distinct imaging and precise fine structural analysis of the endothelial glycocalyx.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alphonsus CS, Rodseth RN (2014) The endothelial glycocalyx: a review of the vascular barrier. Anaesthesia 69:777–784

    Article  PubMed  CAS  Google Scholar 

  • Arkill KP, Neal CR, Mantell JM, Michel CC, Qvortrup K, Rostgaard J, Bates DO, Knupp C, Squire JM (2012) 3D reconstruction of the glycocalyx structure in mammalian capillaries using electron tomography. Microcirculation 19:343–351

    Article  PubMed  Google Scholar 

  • Arkill KP, Qvortrup K, Starborg T, Mantell JM, Knupp C, Michel CC, Harper SJ, Salmon AH, Squire JM, Bates DO, Neal CR (2014) Resolution of the three dimensional structure of components of the glomerular filtration barrier. BMC Nephrol 15:24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Avasthi PS, Koshy V (1988) The anionic matrix at the rat glomerular endothelial surface. Anat Rec 220:258–266

    Article  PubMed  CAS  Google Scholar 

  • Bennett MS (1963) Morphological aspects of extracellular polysaccharides. J Histochem Cytochem 11:14–23

    Article  Google Scholar 

  • Bolton GR, Deen WM, Daniels BS (1998) Assessment of the charge selectivity of glomerular basement membrane using Ficoll sulfate. Am J Physiol 274:889–896

    Google Scholar 

  • Casper J (1967) The introduction in 1928–29 of thorium dioxide in diagnostic radiology. Ann NY Acad Sci. 145:527–529

    Article  PubMed  CAS  Google Scholar 

  • Curran RC, Clark AE, Lovell D (1965) Acid mucopolysaccharides in electron microscopy. The use of the colloidal iron method. J Anat 99:427–434

    PubMed  PubMed Central  CAS  Google Scholar 

  • Dane MJ, van den Berg BM, Lee DH, Boels MG, Tiemeier GL, Avramut MC, van Zonneveld AJ, van der Vlag J, Vink H, Rabelink TJ (2015) A microscopic view on the renal endothelial glycocalyx. Am J Physiol Renal Physiol. 308:F956–F966

    Article  PubMed  CAS  Google Scholar 

  • Ebong EE, Macaluso FP, Spray DC, Tarbell JM (2011) Imaging the endothelial glycocalyx in vitro by rapid freezing/freeze substitution transmission electron microscopy. Arterioscler Thromb Vasc Biol 31:1908–1915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Groot CG (1981) Positive colloidal thorium dioxide as an electron microscopical contrasting agent for glycosaminoglycans, compared with ruthenium red and positive colloidal iron. Histochemistry 71:617–627

    Article  PubMed  CAS  Google Scholar 

  • Haraldsson B, Nyström J (2012) The glomerular endothelium: new insights on function and structure. Curr Opin Nephrol Hypertens 21:258–263

    Article  PubMed  CAS  Google Scholar 

  • Haraldsson B, Nyström J, Deen WM (2008) Properties of the glomerular barrier and mechanisms of proteinuria. Physiol Rev 88:451–487

    Article  PubMed  CAS  Google Scholar 

  • Hjalmarsson C, Johansson BR, Haraldsson B (2004) Electron microscopic evaluation of the endothelial surface layer of glomerular capillaries. Microvasc Res 67:9–17

    Article  PubMed  Google Scholar 

  • Jacob M, Bruegger D, Rehm M, Stoeckelhuber M, Welsch U, Conzen P, Becker BF (2007) The endothelial glycocalyx affords compatibility of Starling’s principle and high cardiac interstitial albumin levels. Cardiovasc Res 73:575–586

    Article  PubMed  CAS  Google Scholar 

  • Lipowsky HH (2005) Microvascular rheology and hemodynamics. Microcirculation 12:5–15

    Article  PubMed  Google Scholar 

  • Lünsdorf H, Kristen I, Barth E (2006) Cationic hydrous thorium dioxide colloids—a useful tool for staining negatively charged surface matrices of bacteria for use in energy-filtered transmission electron microscopy. BMC Microbiol 6:59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Müller A (1906) Bemerkungen über das Hydrosol des Thoriumoxydhydrats. Ber Dtsch Chem Ges 93:2857–2859

    Article  Google Scholar 

  • Nieuwdorp M, Meuwese MC, Mooij HL, Ince C, Broekhuizen LN, Kastelein JJ, Stroes ES, Vink H (2008) Measuring endothelial glycocalyx dimensions in humans: a potential novel tool to monitor vascular vulnerability. J Appl Physiol 104:845–852

    Article  PubMed  Google Scholar 

  • Pries AR, Secomb TW, Gaehtgens P (2000) The endothelial surface layer. Pflugers Arch 440:653–666

    Article  PubMed  CAS  Google Scholar 

  • Rambourg A, Leblond CP (1967) Electron microscope observations on the carbohydrate-rich cell coat present at the surface of cells in the rat. J Cell Biol 32:27–53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, Oude Egbrink MG (2007) The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch 454:345–359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rostgaard J, Qvortrup K (1997) Electron microscopic demonstrations of filamentous molecular sieve plugs in capillary fenestrae. Microvasc Res 53:1–13

    Article  PubMed  CAS  Google Scholar 

  • Squire JM, Chew M, Nneji G, Neal C, Barry J, Michel C (2001) Quasi-periodic substructure in the microvessel endothelial glycocalyx: a possible explanation for molecular filtering? J Struct Biol 136:239–255

    Article  PubMed  CAS  Google Scholar 

  • Vink H, Duling BR (1996) Identification of distinct luminal domains for macromolecules, erythrocytes, and leucocytes within mammalian capillaries. Circ Res 79:581–589

    Article  PubMed  CAS  Google Scholar 

  • Vink H, Duling BR (2000) Capillary endothelial surface layer selectively reduces plasma solute distribution volume. Am J Physiol Heart Circ Physiol 278:H285–H289

    PubMed  CAS  Google Scholar 

  • Wegener K, Zahnert R (1970) Bericht über pathologisch-anatomische und autoradiographische Untersuchungen an 9 Fällen menschlicher Thorotrastose. Virchows Arch A Pathol Pathol Anat. 351:316–332

    Article  PubMed  CAS  Google Scholar 

  • Weinbaum S, Tarbell JM, Damiano ER (2007) The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng 9:121–167

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the German Research Federation (REBIRTH Cluster of Excellence). We thank Dr. Christoph Wrede (Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany) for excellent assistance in electron microscopy, and Herle Chlebusch, Hayet Richy (Department of Nephrology, Hannover Medical School, Hannover, Germany), and Inge Kristen (ZEIM, Helmholtz Center for Infection Research, Braunschweig, Germany) for excellent technical assistance.

Author contributions

JH and HL performed the experiments. JH, MO, and HH designed the study. JH drafted the manuscript. All authors have read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Hegermann.

Ethics declarations

Conflict of interest

The authors declare they have no competing interests.

Human and animal rights statement

All applicable international, national, and/or international guidelines for the care and use of animals were followed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Movie S1

The movie shows the tomographic 3D model shown in Figure 4 from different viewing angles. Biological material is displayed in green and thorium dioxide in red. The lumen of the glomerular capillary faces upwards and the podocytes downwards. The GBM appears translucent. (MP4 1124 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hegermann, J., Lünsdorf, H., Ochs, M. et al. Visualization of the glomerular endothelial glycocalyx by electron microscopy using cationic colloidal thorium dioxide. Histochem Cell Biol 145, 41–51 (2016). https://doi.org/10.1007/s00418-015-1378-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-015-1378-3

Keywords

Navigation