Histochemistry and Cell Biology

, Volume 141, Issue 6, pp 605–612 | Cite as

Method for co-cluster analysis in multichannel single-molecule localisation data

Original Paper


We demonstrate a combined univariate and bivariate Getis and Franklin’s local point pattern analysis method to investigate the co-clustering of membrane proteins in two-dimensional single-molecule localisation data. This method assesses the degree of clustering of each molecule relative to its own species and relative to a second species. Using simulated data, we show that this approach can quantify the degree of cluster overlap in multichannel point patterns. The method is validated using photo-activated localisation microscopy and direct stochastic optical reconstruction microscopy data of the proteins Lck and CD45 at the T cell immunological synapse. Analysing co-clustering in this manner is generalizable to higher numbers of fluorescent species and to three-dimensional or live cell data sets.


Cluster analysis Super-resolution Co-localisation PALM STORM 



D.M.O. is supported by a Marie Curie Career Integration Grant (CIG) Ref 334303. KG is supported by the National Health and Medical Research Council of Australia and the Australian Research Council.


  1. Annibale P et al (2010) Photoactivatable fluorescent protein mEos2 displays repeated photoactivation after a long-lived dark state in the red photoconverted form. J Phys Chem Lett 1:1506–1510CrossRefGoogle Scholar
  2. Annibale P et al (2011a) Identification of clustering artifacts in photoactivated localization microscopy. Nat Methods 8(7):527–528PubMedCrossRefGoogle Scholar
  3. Annibale P et al (2011b) Quantitative photo activated localization microscopy: unraveling the effects of photoblinking. PLoS ONE 6(7):e22678PubMedCentralPubMedCrossRefGoogle Scholar
  4. Annibale P et al (2012) Identification of the factors affecting co-localization precision for quantitative multicolor localization microscopy. Opt Nanoscopy 1(9):1–13Google Scholar
  5. Betzig E et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645PubMedCrossRefGoogle Scholar
  6. Bolte S, Cordeliere FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224:213–232PubMedCrossRefGoogle Scholar
  7. Getis A, Franklin J (1987) Second-order neighbourhood analysis of mapped point patterns. Ecology 68(3):473–477CrossRefGoogle Scholar
  8. Heilemann M et al (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed 47(33):6172–6176CrossRefGoogle Scholar
  9. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19(11):780–782PubMedCrossRefGoogle Scholar
  10. Huang B et al (2008) Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319(5864):810–813PubMedCentralPubMedCrossRefGoogle Scholar
  11. Malkusch S et al (2012) Coordinate-based colocalization analysis of single-molecule localization microscopy data. Histochem Cell Biol 137(1):1–10PubMedCrossRefGoogle Scholar
  12. Owen DM et al (2010) PALM imaging and cluster analysis of protein heterogeneity at the cell surface. J Biophotonics 3(7):446–454PubMedCrossRefGoogle Scholar
  13. Owen MD et al (2013) Quantitative analysis of three-dimensional fluorescence localization microscopy data. Biophys J 105(2):L05–L07PubMedGoogle Scholar
  14. Pavani SRP et al (2009) Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc Natl Acad Sci 106(9):2995–2999PubMedCentralPubMedCrossRefGoogle Scholar
  15. Ripley BD (1977) Modelling spatial patterns. J R Stat Soc B 39:172–192Google Scholar
  16. Rossy J et al (2013) Conformational states of the kinase Lck regulate clustering in early T cell signalling. Nat Immunol 14(1):82–89PubMedCrossRefGoogle Scholar
  17. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–796PubMedCentralPubMedCrossRefGoogle Scholar
  18. Sengupta P, Lippincott-Schwartz J (2012) Quantitative analysis of photoactivated localization microscopy (PALM) datasets using pair-correlation analysis. BioEssays 34(5):396–405PubMedCentralPubMedCrossRefGoogle Scholar
  19. Sengupta P et al (2011) Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis. Nat Methods 8(11):969–975PubMedCentralPubMedCrossRefGoogle Scholar
  20. Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82(5):2775–2783PubMedCentralPubMedCrossRefGoogle Scholar
  21. Veatch SL et al (2012) Correlation functions quantify super-resolution images and estimate apparent clustering due to over-counting. PLoS ONE 7(2):e31457PubMedCentralPubMedCrossRefGoogle Scholar
  22. Vicidomini G et al (2011) Sharper low-power STED nanoscopy by time gating. Nat Methods 8(7):571–573PubMedCrossRefGoogle Scholar
  23. Williamson DJ et al (2011) Pre-existing clusters of the adaptor Lat do not participate in early T cell signalling events. Nat Immunol 12(7):655–662PubMedCrossRefGoogle Scholar
  24. Xu K, Babcock HP, Zhuang X (2012) Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton. Nat Methods 9(2):185–188PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Centre for Vascular Research and Australian Centre for NanoMedicineUniversity of New South WalesSydneyAustralia
  2. 2.Department of MathematicsImperial College LondonLondonUK
  3. 3.Department of Physics and Randall Division of Cell and Molecular BiophysicsKing’s College LondonLondonUK

Personalised recommendations