Advertisement

Histochemistry and Cell Biology

, Volume 142, Issue 1, pp 91–101 | Cite as

Quantitative single-molecule localization microscopy combined with rule-based modeling reveals ligand-induced TNF-R1 reorganization toward higher-order oligomers

  • Franziska Fricke
  • Sebastian Malkusch
  • Gaby Wangorsch
  • Johannes F. Greiner
  • Barbara Kaltschmidt
  • Christian Kaltschmidt
  • Darius Widera
  • Thomas Dandekar
  • Mike Heilemann
Original Paper

Abstract

We report on the assembly of tumor necrosis factor receptor 1 (TNF-R1) prior to ligand activation and its ligand-induced reorganization at the cell membrane. We apply single-molecule localization microscopy to obtain quantitative information on receptor cluster sizes and copy numbers. Our data suggest a dimeric pre-assembly of TNF-R1, as well as receptor reorganization toward higher oligomeric states with stable populations comprising three to six TNF-R1. Our experimental results directly serve as input parameters for computational modeling of the ligand–receptor interaction. Simulations corroborate the experimental finding of higher-order oligomeric states. This work is a first demonstration how quantitative, super-resolution and advanced microscopy can be used for systems biology approaches at the single-molecule and single-cell level.

Keywords

Super-resolution microscopy TNF receptor I Receptor clustering Systems biology Modeling PALM dSTORM 

Notes

Acknowledgments

We thank Markus Braner for help with microscale thermophoresis measurements. M. Heilemann, F. Fricke and S. Malkusch acknowledge the financial support by the German Ministry of Education and Research (BMBF, Grant 336314) and the cluster of excellence “Macromolecular Complexes” (CEF, DFG cluster of excellence (EXC 115)). T. Dandekar and G. Wangorsch acknowledge the financial support by the German Science Foundation (DFG, Da 208/12-1 and SFB688/A2). D. Widera, C. Kaltschmidt, B. Kaltschmidt and J. Greiner were supported by the BMBF and Cassella Med, Cologne.

Supplementary material

418_2014_1195_MOESM1_ESM.docx (627 kb)
Supplementary material 1 (DOCX 626 kb)

References

  1. Annibale P, Vanni S, Scarselli M, Rothlisberger U, Radenovic A (2011) Quantitative photo activated localization microscopy: unraveling the effects of photoblinking. PLoS One 6:e22678. doi: 10.1371/journal.pone.0022678 PubMedCentralPubMedCrossRefGoogle Scholar
  2. Baaske P, Wienken CJ, Reineck P, Duhr S, Braun D (2010) Optical thermophoresis for quantifying the buffer dependence of aptamer binding. Angew Chem Int Ed Engl 49:2238–2241. doi: 10.1002/anie.200903998 PubMedCrossRefGoogle Scholar
  3. Banner DW, D’Arcy A, Janes W, Gentz R, Schoenfeld H-J, Broger C, Loetscher H, Lesslauer W (1993) Crystal structure of the soluble human 55 kd TNF receptor-human TNFβ complex: implications for TNF receptor activation. Cell 73:431–445. doi: 10.1016/0092-8674(93)90132-A PubMedCrossRefGoogle Scholar
  4. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645. doi: 10.1126/science.1127344 PubMedCrossRefGoogle Scholar
  5. Boschert V, Krippner-Heidenreich A, Branschädel M, Tepperink J, Aird A, Scheurich P (2010) Single chain TNF derivatives with individually mutated receptor binding sites reveal differential stoichiometry of ligand receptor complex formation for TNFR1 and TNFR2. Cell Signal 22:1088–1096. doi: 10.1016/j.cellsig.2010.02.011 PubMedCrossRefGoogle Scholar
  6. Brockhaus M, Schoenfeld HJ, Schlaeger EJ, Hunziker W, Lesslauer W, Loetscher H (1990) Identification of two types of tumor necrosis factor receptors on human cell lines by monoclonal antibodies. Proc Natl Acad Sci 87:3127–3131PubMedCentralPubMedCrossRefGoogle Scholar
  7. Chan FK (2007) Three is better than one: pre-ligand receptor assembly in the regulation of TNF receptor signaling. Cytokine 37:101–107. doi: 10.1016/j.cyto.2007.03.005 PubMedCentralPubMedCrossRefGoogle Scholar
  8. Chan FK, Chun HJ, Zheng L, Siegel RM, Bui KL, Lenardo MJ (2000) A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science 288:2351–2354. doi: 10.1126/science.288.5475.2351 PubMedCrossRefGoogle Scholar
  9. Day ES, Cote SM, Whitty A (2012) Binding efficiency of protein–protein complexes. Biochemistry 51:9124–9136. doi: 10.1021/bi301039t PubMedCentralPubMedCrossRefGoogle Scholar
  10. Dietz MS, Fricke F, Krüger CL, Niemann HH, Heilemann M (2013a) Receptor–ligand interactions: binding affinities studied by single-molecule and super-resolution microscopy on intact cells. ChemPhysChem. doi: 10.1002/cphc.201300755
  11. Dietz MS, Haße D, Ferraris DM, Göhler A, Niemann HH, Heilemann M (2013b) Single-molecule photobleaching reveals increased MET receptor dimerization upon ligand binding in intact cells. BMC Biophys 6:6. doi: 10.1186/2046-1682-6-6 PubMedCentralPubMedCrossRefGoogle Scholar
  12. Duhr S, Braun D (2006) Why molecules move along a temperature gradient. Proc Natl Acad Sci 103:19678–19682. doi: 10.1073/pnas.0603873103 PubMedCentralPubMedCrossRefGoogle Scholar
  13. Eck MJ, Sprang SR (1989) The structure of tumor necrosis factor-alpha at 2.6 A resolution. J Biol Chem 264:17595–17605PubMedGoogle Scholar
  14. Endesfelder U, Malkusch S, Flottmann B, Mondry J, Liguzinski P, Verveer PJ, Heilemann M (2011) Chemically induced photoswitching of fluorescent probes—a general concept for super-resolution microscopy. Molecules 16:3106–3118. doi: 10.3390/molecules16043106 PubMedCrossRefGoogle Scholar
  15. Endesfelder U, Malkusch S, Fricke F, Heilemann M (2014) A simple method to estimate the average localization precision of a single-molecule localization microscopy experiment. Histochem Cell Biol. doi: 10.1007/s00418-014-1192-3
  16. Gould TJ, Hess ST, Bewersdorf J (2012) Optical nanoscopy: from acquisition to analysis. Annu Rev Biomed Eng 14:231–254. doi: 10.1146/annurev-bioeng-071811-150025 PubMedCentralPubMedCrossRefGoogle Scholar
  17. Greiner JF-W, Müller J, Zeuner M-T, Hauser S, Seidel T, Klenke C, Grunwald L-M, Schomann T, Widera D, Sudhoff H, Kaltschmidt B, Kaltschmidt C (2013) 1,8-Cineol inhibits nuclear translocation of NF-κB p65 and NF-κB-dependent transcriptional activity. Biochim Biophys Acta 1833:2866–2878. doi: 10.1016/j.bbamcr.2013.07.001 PubMedCrossRefGoogle Scholar
  18. Grell M, Douni E, Wajant H, Löhden M, Clauss M, Maxeiner B, Georgopoulos S, Lesslauer W, Kollias G, Pfizenmaier K, Scheurich P (1995) The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell 83:793–802. doi: 10.1016/0092-8674(95)90192-2 PubMedCrossRefGoogle Scholar
  19. Heidbreder M, Zander C, Malkusch S, Widera D, Kaltschmidt B, Kaltschmidt C, Nair D, Choquet D, Sibarita J-B, Heilemann M (2012) TNF-α influences the lateral dynamics of TNF receptor I in living cells. Biochim Biophys Acta 1823:1984–1989. doi: 10.1016/j.bbamcr.2012.06.026 PubMedCrossRefGoogle Scholar
  20. Henkler F, Behrle E, Dennehy KM, Wicovsky A, Peters N, Warnke C, Pfizenmaier K, Wajant H (2005) The extracellular domains of FasL and Fas are sufficient for the formation of supramolecular FasL–Fas clusters of high stability. J Cell Biol 168:1087–1098. doi: 10.1083/jcb.200501048 PubMedCentralPubMedCrossRefGoogle Scholar
  21. Hohmann H, Remy R, Brockhaus M, van Loon APGM (1989) Two different cell types have different major receptors for human tumor necrosis factor (TNFalpha). J Biol Chem 264:14927–14934PubMedGoogle Scholar
  22. Hymowitz SG, Christinger HW, Fuh G, Ultsch M, O’Connell M, Kelley RF, Ashkenazi A, de Vos AM (1999) Triggering cell death. Mol Cell 4:563–571. doi: 10.1016/S1097-2765(00)80207-5 PubMedCrossRefGoogle Scholar
  23. Jackson TL, Lai R (2004) A mathematical model of receptor-mediated apoptosis: dying to know why FasL is a trimer. Math Biosci Eng 1:325–338. doi: 10.3934/mbe.2004.1.325 PubMedCrossRefGoogle Scholar
  24. Jerabek-Willemsen M, Wienken CJ, Braun D, Baaske P, Duhr S (2011) Molecular interaction studies using microscale thermophoresis. Assay Drug Dev Technol 9:342–353. doi: 10.1089/adt.2011.0380 PubMedCentralPubMedCrossRefGoogle Scholar
  25. Jones E, Oliphant T, Peterson P et al (2001) SciPy: open source scientific tools for Python. http://www.scipy.org/
  26. Krippner-Heidenreich A, Tübing F, Bryde S, Willi S, Zimmermann G, Scheurich P (2002) Control of receptor-induced signaling complex formation by the kinetics of ligand/receptor interaction. J Biol Chem 277:44155–44163. doi: 10.1074/jbc.M207399200 PubMedCrossRefGoogle Scholar
  27. Kull FC, Jacobs S, Cuatrecasas P (1985) Cellular receptor for 125I-labeled tumor necrosis factor: specific binding, affinity labeling, and relationship to sensitivity. Proc Natl Acad Sci 82:5756–5760PubMedCentralPubMedCrossRefGoogle Scholar
  28. Lando D, Endesfelder U, Berger H, Subramanian L, Dunne PD, McColl J, Klenerman D, Carr AM, Sauer M, Allshire RC, Heilemann M, Laue ED (2012) Quantitative single-molecule microscopy reveals that CENP-A(Cnp1) deposition occurs during G2 in fission yeast. Open Biol 2:120078. doi: 10.1098/rsob.120078 PubMedCentralPubMedCrossRefGoogle Scholar
  29. Lee H-W, Lee S-H, Lee H-W, Ryu Y-W, Kwon M-H, Kim Y-S (2005) Homomeric and heteromeric interactions of the extracellular domains of death receptors and death decoy receptors. Biochem Biophys Res Commun 330:1205–1212. doi: 10.1016/j.bbrc.2005.03.101 PubMedCrossRefGoogle Scholar
  30. Lee S-H, Shin JY, Lee A, Bustamante C (2012) Counting single photoactivatable fluorescent molecules by photoactivated localization microscopy (PALM). Proc Natl Acad Sci 109:17436–17441. doi: 10.1073/pnas.1215175109 PubMedCentralPubMedCrossRefGoogle Scholar
  31. Lewis AK, Valley CC, Sachs JN (2012) TNFR1 signaling is associated with backbone conformational changes of receptor dimers consistent with overactivation in the R92Q TRAPS mutant. Biochemistry 51:6545–6555. doi: 10.1021/bi3006626 PubMedCrossRefGoogle Scholar
  32. MacEwan DJ (2002) TNF ligands and receptors—a matter of life and death. Br J Pharmacol 135:855–875. doi: 10.1038/sj.bjp.0704549 PubMedCentralPubMedCrossRefGoogle Scholar
  33. Malkusch S, Endesfelder U, Mondry J, Gelléri M, Verveer PJ, Heilemann M (2012) Coordinate-based colocalization analysis of single-molecule localization microscopy data. Histochem Cell Biol 137:1–10. doi: 10.1007/s00418-011-0880-5 PubMedCrossRefGoogle Scholar
  34. Malkusch S, Muranyi W, Müller B, Kräusslich H-G, Heilemann M (2013) Single-molecule coordinate-based analysis of the morphology of HIV-1 assembly sites with near-molecular spatial resolution. Histochem Cell Biol 139:173–179. doi: 10.1007/s00418-012-1014-4 PubMedCrossRefGoogle Scholar
  35. Muranyi W, Malkusch S, Müller B, Heilemann M, Kräusslich H-G (2013) Super-resolution microscopy reveals specific recruitment of HIV-1 envelope proteins to viral assembly sites dependent on the envelope C-terminal tail. PLoS Pathog 9:e1003198. doi: 10.1371/journal.ppat.1003198 PubMedCentralPubMedCrossRefGoogle Scholar
  36. Naismith JH, Devine TQ, Brandhuber BJ, Sprang SR (1995) Crystallographic evidence for dimerization of unliganded tumor necrosis factor receptor. J Biol Chem 270:13303–13307. doi: 10.1074/jbc.270.22.13303 PubMedCrossRefGoogle Scholar
  37. Nelson G, Paraoan L, Spiller DG, Wilde GJC, Browne MA, Djali PK, Unitt JF, Sullivan E, Floettmann E, White MRH (2002) Multi-parameter analysis of the kinetics of NF-kappaB signalling and transcription in single living cells. J Cell Sci 115:1137–1148PubMedGoogle Scholar
  38. Ori A, Banterle N, Iskar M, Andrés-Pons A, Escher C, Khanh Bui H, Sparks L, Solis-Mezarino V, Rinner O, Bork P, Lemke EA, Beck M (2013) Cell type-specific nuclear pores: a case in point for context-dependent stoichiometry of molecular machines. Mol Syst Biol 9:648. doi: 10.1038/msb.2013.4 PubMedCentralPubMedCrossRefGoogle Scholar
  39. Ozsoy HZ, Sivasubramanian N, Wieder ED, Pedersen S, Mann DL (2008) Oxidative stress promotes ligand-independent and enhanced ligand-dependent tumor necrosis factor receptor signaling. J Biol Chem 283:23419–23428. doi: 10.1074/jbc.M802967200 PubMedCentralPubMedCrossRefGoogle Scholar
  40. Presley JF, Cole NB, Schroer TA, Hirschberg K, Zaal KJ, Lippincott-Schwartz J (1997) ER-to-Golgi transport visualized in living cells. Nature 389:81–85. doi: 10.1038/38001 PubMedCrossRefGoogle Scholar
  41. Puchner EM, Walter JM, Kasper R, Huang B, Lim WA (2013) Counting molecules in single organelles with superresolution microscopy allows tracking of the endosome maturation trajectory. Proc Natl Acad Sci 110:16015–16020. doi: 10.1073/pnas.1309676110 PubMedCentralPubMedCrossRefGoogle Scholar
  42. Richter F, Liebig T, Guenzi E, Herrmann A, Scheurich P, Pfizenmaier K, Kontermann RE (2013) Antagonistic TNF receptor one-specific antibody (ATROSAB): receptor binding and in vitro bioactivity. PLoS One 8:e72156. doi: 10.1371/journal.pone.0072156 PubMedCentralPubMedCrossRefGoogle Scholar
  43. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. doi: 10.1038/nmeth.2019 PubMedCrossRefGoogle Scholar
  44. Schneider-Brachert W, Tchikov V, Neumeyer J, Jakob M, Winoto-Morbach S, Held-Feindt J, Heinrich M, Merkel O, Ehrenschwender M, Adam D, Mentlein R, Kabelitz D, Schütze S (2004) Compartmentalization of TNF receptor 1 signaling: internalized TNF receptosomes as death signaling vesicles. Immunity 21:415–428. doi: 10.1016/j.immuni.2004.08.017 PubMedCrossRefGoogle Scholar
  45. Sengupta P, Jovanovic-Talisman T, Skoko D, Renz M, Veatch SL, Lippincott-Schwartz J (2011) Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis. Nat Methods 8:969–975. doi: 10.1038/nmeth.1704 PubMedCentralPubMedCrossRefGoogle Scholar
  46. Siegel RM, Muppidi JR, Sarker M, Lobito A, Jen M, Martin D, Straus SE, Lenardo MJ (2004) SPOTS: signaling protein oligomeric transduction structures are early mediators of death receptor-induced apoptosis at the plasma membrane. J Cell Biol 167:735–744. doi: 10.1083/jcb.200406101 PubMedCentralPubMedCrossRefGoogle Scholar
  47. Sneddon MW, Faeder JR, Emonet T (2011) Efficient modeling, simulation and coarse-graining of biological complexity with NFsim. Nat Methods 8:177–183. doi: 10.1038/nmeth.1546 PubMedCrossRefGoogle Scholar
  48. Valley CC, Lewis AK, Mudaliar DJ, Perlmutter JD, Braun AR, Karim CB, Thomas DD, Brody JR, Sachs JN (2012) Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces death receptor 5 networks that are highly organized. J Biol Chem 287:21265–21278. doi: 10.1074/jbc.M111.306480 PubMedCentralPubMedCrossRefGoogle Scholar
  49. Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11:700–714. doi: 10.1038/nrm2970 PubMedCrossRefGoogle Scholar
  50. Wajant H, Scheurich P (2011) TNFR1-induced activation of the classical NF-κB pathway. FEBS J 278:862–876. doi: 10.1111/j.1742-4658.2011.08015.x PubMedCrossRefGoogle Scholar
  51. Widera D, Mikenberg I, Elvers M, Kaltschmidt C, Kaltschmidt B (2006) Tumor necrosis factor alpha triggers proliferation of adult neural stem cells via IKK/NF-kappaB signaling. BMC Neurosci 7:64. doi: 10.1186/1471-2202-7-64 PubMedCentralPubMedCrossRefGoogle Scholar
  52. Winkel C, Neumann S, Surulescu C, Scheurich P (2012) A minimal mathematical model for the initial molecular interactions of death receptor signalling. Math Biosci Eng 9:663–683. doi: 10.3934/mbe.2012.9.663 PubMedCrossRefGoogle Scholar
  53. Wolter S, Löschberger A, Holm T, Aufmkolk S, Dabauvalle M, van de Linde S, Sauer M (2012) rapidSTORM: accurate, fast open-source software for localization microscopy. Nat Methods 9:1040–1041. doi: 10.1038/nmeth.2224 PubMedCrossRefGoogle Scholar
  54. Yoshida A, Kohchi C, Inagawa H, Nishizawa T, Hori H, Soma G (2006) A soluble 17 kDa tumour necrosis factor (TNF) mutein, TNF-SAM2, with membrane-bound TNF-like biological characteristics. Anticancer Res 26:4003–4008PubMedGoogle Scholar
  55. Zagouras P, Rose J (1993) Dynamic equilibrium between vesicular stomatitis virus glycoprotein monomers and trimers in the Golgi and at the cell surface. J Virol 67:7533–7538PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Franziska Fricke
    • 1
  • Sebastian Malkusch
    • 1
  • Gaby Wangorsch
    • 2
  • Johannes F. Greiner
    • 3
  • Barbara Kaltschmidt
    • 4
  • Christian Kaltschmidt
    • 3
  • Darius Widera
    • 3
  • Thomas Dandekar
    • 2
  • Mike Heilemann
    • 1
    • 5
  1. 1.Institute for Physical and Theoretical ChemistryJohann-Wolfgang-Goethe-University FrankfurtFrankfurt am MainGermany
  2. 2.Bioinformatics, BiocenterJulius-Maximilians-University WürzburgWürzburgGermany
  3. 3.Department of Cell Biology, Faculty of BiologyUniversity of BielefeldBielefeldGermany
  4. 4.Molecular Neurobiology, Faculty of BiologyUniversity of BielefeldBielefeldGermany
  5. 5.BIOQUANT CentreUniversity of HeidelbergHeidelbergGermany

Personalised recommendations