Histochemistry and Cell Biology

, Volume 142, Issue 1, pp 19–41 | Cite as

Phototransformable fluorescent proteins: which one for which application?

  • Virgile AdamEmail author


In these last two decades , fluorescent proteins (FPs) have become highly valued imaging tools for cell biology, owing to their compatibility with living samples, their low levels of invasiveness and the possibility to specifically fuse them to a variety of proteins of interest. Remarkably, the recent development of phototransformable fluorescent proteins (PTFPs) has made it possible to conceive optical imaging experiments that were unimaginable only a few years ago. For example, it is nowadays possible to monitor intra- or intercellular trafficking, to optically individualize single cells in tissues or to observe single molecules in live cells. The tagging specificity brought by these genetically encoded highlighters leads to constant progress in the engineering of increasingly powerful, versatile and non-cytotoxic FPs. This review is focused on the recent developments of PTFPs and highlights their contribution to studies within cells, tissues and even living organisms. The aspects of single-molecule localization microscopy, intracellular tracking of photoactivated molecules, applications of PTFPs in biotechnology/optobiology and complementarities between PTFPs and other microscopy techniques are particularly discussed.


Fluorescent proteins Photoactivation Live cell Imaging Super-resolution Biotechnology 



VA is grateful to Dominique Bourgeois for stimulating and fruitful discussions and to Jacques-Philippe Colletier for critical reading of the manuscript. Institutional Grants from the CNRS, CEA and UJF and financial support by the ANR (ANR-2011-BSV5-012-01 NOBLEACH) are acknowledged.


  1. Abbe EK (1873) Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv für Mikroskopische Anatomie 9(1):413–418Google Scholar
  2. Adam V, Lelimousin M, Boehme S, Desfonds G, Nienhaus K, Field MJ, Wiedenmann J, McSweeney S, Nienhaus GU, Bourgeois D (2008) Structural characterization of IrisFP, an optical highlighter undergoing multiple photo-induced transformations. Proc Natl Acad Sci USA 105(47):18343–18348. doi: 10.1073/pnas.0805949105 PubMedCentralPubMedGoogle Scholar
  3. Adam V, Carpentier P, Violot S, Lelimousin M, Darnault C, Nienhaus GU, Bourgeois D (2009) Structural basis of X-ray-induced transient photobleaching in a photoactivatable green fluorescent protein. J Am Chem Soc 131(50):18063–18065. doi: 10.1021/ja907296v PubMedGoogle Scholar
  4. Adam V, Mizuno H, Grichine A, Hotta J, Yamagata Y, Moeyaert B, Nienhaus GU, Miyawaki A, Bourgeois D, Hofkens J (2010) Data storage based on photochromic and photoconvertible fluorescent proteins. J Biotechnol 149(4):289–298. doi: 10.1016/j.jbiotec.2010.04.001 PubMedGoogle Scholar
  5. Adam V, Moeyaert B, David CC, Mizuno H, Lelimousin M, Dedecker P, Ando R, Miyawaki A, Michiels J, Engelborghs Y, Hofkens J (2011) Rational design of photoconvertible and biphotochromic fluorescent proteins for advanced microscopy applications. Chem Biol 18(10):1241–1251. doi: 10.1016/j.chembiol.2011.08.007 PubMedGoogle Scholar
  6. Ando R, Hama H, Yamamoto-Hino M, Mizuno H, Miyawaki A (2002) An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc Natl Acad Sci USA 99(20):12651–12656. doi: 10.1073/pnas.202320599 PubMedCentralPubMedGoogle Scholar
  7. Ando R, Mizuno H, Miyawaki A (2004) Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science 306(5700):1370–1373. doi: 10.1126/science.1102506 PubMedGoogle Scholar
  8. Ando R, Flors C, Mizuno H, Hofkens J, Miyawaki A (2007) Highlighted generation of fluorescence signals using simultaneous two-color irradiation on Dronpa mutants. Biophys J 92(12):L97–L99. doi: 10.1529/biophysj.107.105882 PubMedCentralPubMedGoogle Scholar
  9. Andresen M, Stiel AC, Trowitzsch S, Weber G, Eggeling C, Wahl MC, Hell SW, Jakobs S (2007) Structural basis for reversible photoswitching in Dronpa. Proc Natl Acad Sci USA 104(32):13005–13009. doi: 10.1073/pnas.0700629104 PubMedCentralPubMedGoogle Scholar
  10. Andresen M, Stiel AC, Folling J, Wenzel D, Schonle A, Egner A, Eggeling C, Hell SW, Jakobs S (2008) Photoswitchable fluorescent proteins enable monochromatic multilabel imaging and dual color fluorescence nanoscopy. Nat Biotechnol 26(9):1035–1040. doi: 10.1038/nbt.1493 PubMedGoogle Scholar
  11. Annibale P, Vanni S, Scarselli M, Rothlisberger U, Radenovic A (2011) Identification of clustering artifacts in photoactivated localization microscopy. Nat Methods 8(7):527–528. doi: 10.1038/nmeth.1627 PubMedGoogle Scholar
  12. Annibale P, Scarselli M, Greco M, Radenovic A (2012) Identification of the factors affecting co-localization precision for quantitative multicolor localization microscopy. Opt Nanosc 1(9):1–13Google Scholar
  13. Aramaki S, Hatta K (2006) Visualizing neurons one-by-one in vivo: optical dissection and reconstruction of neural networks with reversible fluorescent proteins. Dev Dyn 235(8):2192–2199. doi: 10.1002/dvdy.20826 PubMedGoogle Scholar
  14. Arimura S, Yamamoto J, Aida GP, Nakazono M, Tsutsumi N (2004) Frequent fusion and fission of plant mitochondria with unequal nucleoid distribution. Proc Natl Acad Sci USA 101(20):7805–7808. doi: 10.1073/pnas.0401077101 PubMedCentralPubMedGoogle Scholar
  15. Badrinarayanan A, Reyes-Lamothe R, Uphoff S, Leake MC, Sherratt DJ (2012) In vivo architecture and action of bacterial structural maintenance of chromosome proteins. Science 338(6106):528–531. doi: 10.1126/science.1227126 PubMedGoogle Scholar
  16. Baker SM, Buckheit RW 3rd, Falk MM (2010) Green-to-red photoconvertible fluorescent proteins: tracking cell and protein dynamics on standard wide-field mercury arc-based microscopes. BMC Cell Biol 11:15. doi: 10.1186/1471-2121-11-15 PubMedCentralPubMedGoogle Scholar
  17. Barton K, Mathur N, Mathur J (2013) Simultaneous live-imaging of peroxisomes and the ER in plant cells suggests contiguity but no luminal continuity between the two organelles. Front Physiol 4:196. doi: 10.3389/fphys.2013.00196 PubMedCentralPubMedGoogle Scholar
  18. Bates M, Huang B, Zhuang X (2008) Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes. Curr Opin Chem Biol 12(5):505–514. doi: 10.1016/j.cbpa.2008.08.008 PubMedCentralPubMedGoogle Scholar
  19. Bates M, Dempsey GT, Chen KH, Zhuang X (2012) Multicolor super-resolution fluorescence imaging via multi-parameter fluorophore detection. Chemphyschem: A Eur J Chem Phys Phys Chem 13(1):99–107. doi: 10.1002/cphc.201100735 Google Scholar
  20. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645. doi: 10.1126/science.1127344 PubMedGoogle Scholar
  21. Biteen JS, Thompson MA, Tselentis NK, Bowman GR, Shapiro L, Moerner WE (2008) Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP. Nat Methods 5(11):947–949. doi: 10.1038/nmeth.1258 PubMedCentralPubMedGoogle Scholar
  22. Bizzarri R, Serresi M, Cardarelli F, Abbruzzetti S, Campanini B, Viappiani C, Beltram F (2010) Single amino acid replacement makes Aequorea victoria fluorescent proteins reversibly photoswitchable. J Am Chem Soc 132(1):85–95. doi: 10.1021/ja9014953 PubMedGoogle Scholar
  23. Bock H, Geisler C, Wurm CA, von Middendorff C, Jakobs S, Schönle A, Egner A, Hell SW, Eggeling C (2007) Two-color far-field fluorescence nanoscopy based on photoswitchable emitters. Appl Phys B 88(2):161–165. doi: 10.1007/s00340-007-2729-0 Google Scholar
  24. Bourgeois D, Adam V (2012) Reversible photoswitching in fluorescent proteins: a mechanistic view. IUBMB Life 64(6):482–491. doi: 10.1002/iub.1023 PubMedGoogle Scholar
  25. Brakemann T, Weber G, Andresen M, Groenhof G, Stiel AC, Trowitzsch S, Eggeling C, Grubmuller H, Hell SW, Wahl MC, Jakobs S (2010) Molecular basis of the light-driven switching of the photochromic fluorescent protein Padron. J Biol Chem 285(19):14603–14609. doi: 10.1074/jbc.M109.086314 PubMedCentralPubMedGoogle Scholar
  26. Brakemann T, Stiel AC, Weber G, Andresen M, Testa I, Grotjohann T, Leutenegger M, Plessmann U, Urlaub H, Eggeling C, Wahl MC, Hell SW, Jakobs S (2011) A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching. Nat Biotechnol 29(10):942–947. doi: 10.1038/nbt.1952 PubMedGoogle Scholar
  27. Chang H, Zhang M, Ji W, Chen J, Zhang Y, Liu B, Lu J, Zhang J, Xu P, Xu T (2012) A unique series of reversibly switchable fluorescent proteins with beneficial properties for various applications. Proc Natl Acad Sci USA 109(12):4455–4460. doi: 10.1073/pnas.1113770109 PubMedCentralPubMedGoogle Scholar
  28. Chmyrov A, Keller J, Grotjohann T, Ratz M, d’Este E, Jakobs S, Eggeling C, Hell SW (2013) Nanoscopy with more than 100,000 ‘doughnuts’. Nat Methods 10(8):737–740. doi: 10.1038/nmeth.2556 PubMedGoogle Scholar
  29. Chudakov DM, Verkhusha VV, Staroverov DB, Souslova EA, Lukyanov S, Lukyanov KA (2004) Photoswitchable cyan fluorescent protein for protein tracking. Nat Biotechnol 22(11):1435–1439. doi: 10.1038/nbt1025 PubMedGoogle Scholar
  30. Chudakov DM, Lukyanov S, Lukyanov KA (2005) Fluorescent proteins as a toolkit for in vivo imaging. Trends Biotechnol 23(12):605–613. doi: 10.1016/j.tibtech.2005.10.005 PubMedGoogle Scholar
  31. Chudakov DM, Lukyanov S, Lukyanov KA (2007) Tracking intracellular protein movements using photoswitchable fluorescent proteins PS-CFP2 and Dendra2. Nat Protoc 2(8):2024–2032. doi: 10.1038/nprot.2007.291 PubMedGoogle Scholar
  32. Dai M, Fisher HE, Temirov J, Kiss C, Phipps ME, Pavlik P, Werner JH, Bradbury AR (2007) The creation of a novel fluorescent protein by guided consensus engineering. Protein Eng Des Select: PEDS 20(2):69–79. doi: 10.1093/protein/gzl056 Google Scholar
  33. Dedecker P, Hotta J, Flors C, Sliwa M, Uji-i H, Roeffaers MB, Ando R, Mizuno H, Miyawaki A, Hofkens J (2007) Subdiffraction imaging through the selective donut-mode depletion of thermally stable photoswitchable fluorophores: numerical analysis and application to the fluorescent protein Dronpa. J Am Chem Soc 129(51):16132–16141. doi: 10.1021/ja076128z PubMedGoogle Scholar
  34. Dedecker P, Mo GC, Dertinger T, Zhang J (2012) Widely accessible method for superresolution fluorescence imaging of living systems. Proc Natl Acad Sci USA 109(27):10909–10914. doi: 10.1073/pnas.1204917109 PubMedCentralPubMedGoogle Scholar
  35. Dennis AM, Rhee WJ, Sotto D, Dublin SN, Bao G (2012) Quantum dot-fluorescent protein FRET probes for sensing intracellular pH. ACS Nano 6(4):2917–2924. doi: 10.1021/nn2038077 PubMedCentralPubMedGoogle Scholar
  36. Dertinger T, Colyer R, Iyer G, Weiss S, Enderlein J (2009) Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc Natl Acad Sci USA 106(52):22287–22292. doi: 10.1073/pnas.0907866106 PubMedCentralPubMedGoogle Scholar
  37. Dhonukshe P, Aniento F, Hwang I, Robinson DG, Mravec J, Stierhof YD, Friml J (2007) Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in Arabidopsis. Curr Biol: CB 17(6):520–527. doi: 10.1016/j.cub.2007.01.052 PubMedGoogle Scholar
  38. Don Paul C, Kiss C, Traore DA, Gong L, Wilce MC, Devenish RJ, Bradbury A, Prescott M (2013) Phanta: a non-fluorescent photochromic acceptor for pcFRET. PLoS ONE 8(9):e75835. doi: 10.1371/journal.pone.0075835 PubMedCentralPubMedGoogle Scholar
  39. Donner JS, Thompson SA, Kreuzer MP, Baffou G, Quidant R (2012) Mapping intracellular temperature using green fluorescent protein. Nano Lett 12(4):2107–2111. doi: 10.1021/nl300389y PubMedGoogle Scholar
  40. Duan C, Adam V, Byrdin M, Ridard J, Kieffer-Jaquinod S, Morlot C, Arcizet D, Demachy I, Bourgeois D (2013) Structural evidence for a two-regime photobleaching mechanism in a reversibly switchable fluorescent protein. J Am Chem Soc 135(42):15841–15850. doi: 10.1021/ja406860e PubMedGoogle Scholar
  41. Egner A, Geisler C, von Middendorff C, Bock H, Wenzel D, Medda R, Andresen M, Stiel AC, Jakobs S, Eggeling C, Schonle A, Hell SW (2007) Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters. Biophys J 93(9):3285–3290. doi: 10.1529/biophysj.107.112201 PubMedCentralPubMedGoogle Scholar
  42. Endesfelder U, Malkusch S, Flottmann B, Mondry J, Liguzinski P, Verveer PJ, Heilemann M (2011) Chemically induced photoswitching of fluorescent probes—a general concept for super-resolution microscopy. Molecules 16(4):3106–3118. doi: 10.3390/molecules16043106 PubMedGoogle Scholar
  43. Endesfelder U, Finan K, Holden SJ, Cook PR, Kapanidis AN, Heilemann M (2013) Multiscale spatial organization of RNA polymerase in Escherichia coli. Biophys J 105(1):172–181. doi: 10.1016/j.bpj.2013.05.048 PubMedGoogle Scholar
  44. English BP, Hauryliuk V, Sanamrad A, Tankov S, Dekker NH, Elf J (2011) Single-molecule investigations of the stringent response machinery in living bacterial cells. Proc Natl Acad Sci USA 108(31):E365–E373. doi: 10.1073/pnas.1102255108 PubMedCentralPubMedGoogle Scholar
  45. Faas FG, Avramut MC, van den Berg BM, Mommaas AM, Koster AJ, Ravelli RB (2012) Virtual nanoscopy: generation of ultra-large high resolution electron microscopy maps. J Cell Biol 198(3):457–469. doi: 10.1083/jcb.201201140 PubMedCentralPubMedGoogle Scholar
  46. Faro AR, Carpentier P, Jonasson G, Pompidor G, Arcizet D, Demachy I, Bourgeois D (2011) Low-temperature chromophore isomerization reveals the photoswitching mechanism of the fluorescent protein Padron. J Am Chem Soc 133(41):16362–16365. doi: 10.1021/ja207001y PubMedGoogle Scholar
  47. Folling J, Bossi M, Bock H, Medda R, Wurm CA, Hein B, Jakobs S, Eggeling C, Hell SW (2008) Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nat Methods 5(11):943–945. doi: 10.1038/nmeth.1257 PubMedGoogle Scholar
  48. Fron E, Sliwa M, Adam V, Michiels J, Rocha S, Dedecker P, Hofkens J, Mizuno H (2013a) Excited state dynamics of the photoconvertible fluorescent protein Kaede revealed by ultrafast spectroscopy. Photochem Photobiol Sci. doi: 10.1039/c3pp50335f Google Scholar
  49. Fron E, Van der Auweraer M, Hofkens J, Dedecker P (2013b) Excited state dynamics of photoswitchable fluorescent protein padron. J Phys Chem B 117(51):16422–16427. doi: 10.1021/jp409654f PubMedGoogle Scholar
  50. Fron E, Van der Auweraer M, Moeyaert B, Michiels J, Mizuno H, Hofkens J, Adam V (2013c) Revealing the excited-state dynamics of the fluorescent protein Dendra2. J Phys Chem B 117(8):2300–2313. doi: 10.1021/jp309219m PubMedGoogle Scholar
  51. Frost NA, Lu HE, Blanpied TA (2012) Optimization of cell morphology measurement via single-molecule tracking PALM. PLoS ONE 7(5):e36751. doi: 10.1371/journal.pone.0036751 PubMedCentralPubMedGoogle Scholar
  52. Fuchs J, Bohme S, Oswald F, Hedde PN, Krause M, Wiedenmann J, Nienhaus GU (2010) A photoactivatable marker protein for pulse-chase imaging with superresolution. Nat Methods 7(8):627–630. doi: 10.1038/nmeth.1477 PubMedGoogle Scholar
  53. Gahlmann A, Ptacin JL, Grover G, Quirin S, von Diezmann AR, Lee MK, Backlund MP, Shapiro L, Piestun R, Moerner WE (2013) Quantitative multicolor subdiffraction imaging of bacterial protein ultrastructures in three dimensions. Nano Lett 13(3):987–993. doi: 10.1021/nl304071h PubMedCentralPubMedGoogle Scholar
  54. Galanzha EI, Nedosekin DA, Sarimollaoglu M, Orza AI, Biris AS, Verkhusha VV, Zharov VP (2013) Photoacoustic and photothermal cytometry using photoswitchable proteins and nanoparticles with ultrasharp resonances. J Biophoton. doi: 10.1002/jbio.201300140
  55. Grotjohann T, Testa I, Leutenegger M, Bock H, Urban NT, Lavoie-Cardinal F, Willig KI, Eggeling C, Jakobs S, Hell SW (2011) Diffraction-unlimited all-optical imaging and writing with a photochromic GFP. Nature 478(7368):204–208. doi: 10.1038/nature10497 PubMedGoogle Scholar
  56. Grotjohann T, Testa I, Reuss M, Brakemann T, Eggeling C, Hell SW, Jakobs S (2012) rsEGFP2 enables fast RESOLFT nanoscopy of living cells. eLife 1:e00248. doi: 10.7554/eLife.00248
  57. Gunewardene MS, Subach FV, Gould TJ, Penoncello GP, Gudheti MV, Verkhusha VV, Hess ST (2011) Superresolution imaging of multiple fluorescent proteins with highly overlapping emission spectra in living cells. Biophys J 101(6):1522–1528. doi: 10.1016/j.bpj.2011.07.049 PubMedCentralPubMedGoogle Scholar
  58. Gustafsson MG (2005) Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci USA 102(37):13081–13086. doi: 10.1073/pnas.0406877102 PubMedCentralPubMedGoogle Scholar
  59. Hanson MR, Sattarzadeh A (2013) Trafficking of proteins through plastid stromules. Plant Cell 25(8):2774–2782. doi: 10.1105/tpc.113.112870 PubMedGoogle Scholar
  60. Hanson GT, McAnaney TB, Park ES, Rendell MEP, Yarbrough DK, Chu SY, Xi LX, Boxer SG, Montrose MH, Remington SJ (2002) Green fluorescent protein variants as ratiometric dual emission pH sensors. 1. Structural characterization and preliminary application. Biochemistry 41(52):15477–15488. doi: 10.1021/Bi026609p PubMedGoogle Scholar
  61. Hartwich TM, Subach FV, Cooley L, Verkhusha VV, Bewersdorf J (2013) Determination of two-photon photoactivation rates of fluorescent proteins. Phys Chem Chem Phys 15(36):14868–14872. doi: 10.1039/c3cp51035b PubMedGoogle Scholar
  62. Hatta K, Tsujii H, Omura T (2006) Cell tracking using a photoconvertible fluorescent protein. Nat Protoc 1(2):960–967. doi: 10.1038/nprot.2006.96 PubMedGoogle Scholar
  63. Heidbreder M, Zander C, Malkusch S, Widera D, Kaltschmidt B, Kaltschmidt C, Nair D, Choquet D, Sibarita JB, Heilemann M (2012) TNF-alpha influences the lateral dynamics of TNF receptor I in living cells. Biochim Biophys Acta 1823(10):1984–1989. doi: 10.1016/j.bbamcr.2012.06.026 PubMedGoogle Scholar
  64. Heilemann M, van de Linde S, Schuttpelz M, Kasper R, Seefeldt B, Mukherjee A, Tinnefeld P, Sauer M (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem 47(33):6172–6176. doi: 10.1002/anie.200802376 Google Scholar
  65. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19(11):780–782PubMedGoogle Scholar
  66. Henderson JN, Ai HW, Campbell RE, Remington SJ (2007) Structural basis for reversible photobleaching of a green fluorescent protein homologue. Proc Natl Acad Sci USA 104(16):6672–6677. doi: 10.1073/pnas.0700059104 PubMedCentralPubMedGoogle Scholar
  67. Hendrix J, Flors C, Dedecker P, Hofkens J, Engelborghs Y (2008) Dark states in monomeric red fluorescent proteins studied by fluorescence correlation and single molecule spectroscopy. Biophys J 94(10):4103–4113. doi: 10.1529/biophysj.107.123596 PubMedCentralPubMedGoogle Scholar
  68. Hess ST, Girirajan TP, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91(11):4258–4272. doi: 10.1529/biophysj.106.091116 PubMedCentralPubMedGoogle Scholar
  69. Hofmann M, Eggeling C, Jakobs S, Hell SW (2005) Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc Natl Acad Sci USA 102(49):17565–17569. doi: 10.1073/pnas.0506010102 PubMedCentralPubMedGoogle Scholar
  70. Hoi H, Shaner NC, Davidson MW, Cairo CW, Wang J, Campbell RE (2010) A monomeric photoconvertible fluorescent protein for imaging of dynamic protein localization. J Mol Biol 401(5):776–791. doi: 10.1016/j.jmb.2010.06.056 PubMedGoogle Scholar
  71. Hoi H, Matsuda T, Nagai T, Campbell RE (2013) Highlightable Ca2+ indicators for live cell imaging. J Am Chem Soc 135(1):46–49. doi: 10.1021/ja310184a PubMedGoogle Scholar
  72. Izeddin I, Specht CG, Lelek M, Darzacq X, Triller A, Zimmer C, Dahan M (2011) Super-resolution dynamic imaging of dendritic spines using a low-affinity photoconvertible actin probe. PLoS ONE 6(1):e15611. doi: 10.1371/journal.pone.0015611 PubMedCentralPubMedGoogle Scholar
  73. Jakobs S (2006) High resolution imaging of live mitochondria. Biochim Biophys Acta 1763(5–6):561–575. doi: 10.1016/j.bbamcr.2006.04.004 PubMedGoogle Scholar
  74. Jasik J, Boggetti B, Baluska F, Volkmann D, Gensch T, Rutten T, Altmann T, Schmelzer E (2013) PIN2 turnover in Arabidopsis root epidermal cells explored by the photoconvertible protein Dendra2. PLoS ONE 8(4):e61403. doi: 10.1371/journal.pone.0061403 PubMedCentralPubMedGoogle Scholar
  75. Jung G, Mais S, Zumbush A, Brauchle C (2000) The role of dark states in the photodynamics of the green fluorescent protein examined with two-color fluorescence excitation spectroscopy. J Phys Chem A 104(5):873–877Google Scholar
  76. Kao YT, Zhu X, Min W (2012) Protein-flexibility mediated coupling between photoswitching kinetics and surrounding viscosity of a photochromic fluorescent protein. Proc Natl Acad Sci USA 109(9):3220–3225. doi: 10.1073/pnas.1115311109 PubMedCentralPubMedGoogle Scholar
  77. Kiss C, Temirov J, Chasteen L, Waldo GS, Bradbury AR (2009) Directed evolution of an extremely stable fluorescent protein. Protein Eng Des Select: PEDS 22(5):313–323. doi: 10.1093/protein/gzp006 Google Scholar
  78. Kitagawa M, Fujita T (2013) Quantitative imaging of directional transport through plasmodesmata in moss protonemata via single-cell photoconversion of Dendra2. J Plant Res 126(4):577–585. doi: 10.1007/s10265-013-0547-5 PubMedGoogle Scholar
  79. Kiyonaka S, Kajimoto T, Sakaguchi R, Shinmi D, Omatsu-Kanbe M, Matsuura H, Imamura H, Yoshizaki T, Hamachi I, Morii T, Mori Y (2013) Genetically encoded fluorescent thermosensors visualize subcellular thermoregulation in living cells. Nat Methods 10(12):1232–1238. doi: 10.1038/nmeth.2690 PubMedGoogle Scholar
  80. Kner P, Chhun BB, Griffis ER, Winoto L, Gustafsson MG (2009) Super-resolution video microscopy of live cells by structured illumination. Nat Methods 6(5):339–342. doi: 10.1038/nmeth.1324 PubMedCentralPubMedGoogle Scholar
  81. Kopek BG, Shtengel G, Xu CS, Clayton DA, Hess HF (2012) Correlative 3D superresolution fluorescence and electron microscopy reveal the relationship of mitochondrial nucleoids to membranes. Proc Natl Acad Sci USA 109(16):6136–6141. doi: 10.1073/pnas.1121558109 PubMedCentralPubMedGoogle Scholar
  82. Kopek BG, Shtengel G, Grimm JB, Clayton DA, Hess HF (2013) Correlative photoactivated localization and scanning electron microscopy. PLoS ONE 8(10):e77209. doi: 10.1371/journal.pone.0077209 PubMedCentralPubMedGoogle Scholar
  83. Lando D, Endesfelder U, Berger H, Subramanian L, Dunne PD, McColl J, Klenerman D, Carr AM, Sauer M, Allshire RC, Heilemann M, Laue ED (2012) Quantitative single-molecule microscopy reveals that CENP-A(Cnp1) deposition occurs during G2 in fission yeast. Open Biol 2(7):120078. doi: 10.1098/rsob.120078 PubMedCentralPubMedGoogle Scholar
  84. Lee SF, Thompson MA, Schwartz MA, Shapiro L, Moerner WE (2011) Super-resolution imaging of the nucleoid-associated protein HU in Caulobacter crescentus. Biophys J 100(7):L31–L33. doi: 10.1016/j.bpj.2011.02.022 PubMedCentralPubMedGoogle Scholar
  85. Lee SH, Shin JY, Lee A, Bustamante C (2012) Counting single photoactivatable fluorescent molecules by photoactivated localization microscopy (PALM). Proc Natl Acad Sci USA 109(43):17436–17441. doi: 10.1073/pnas.1215175109 PubMedCentralPubMedGoogle Scholar
  86. Li S, He Y, Zhao J, Zhang L, Sun MX (2013) Polar protein transport between apical and basal cells during tobacco early embryogenesis. Plant Cell Rep 32(2):285–291. doi: 10.1007/s00299-012-1362-5 PubMedGoogle Scholar
  87. Lidke K, Rieger B, Jovin T, Heintzmann R (2005) Superresolution by localization of quantum dots using blinking statistics. Opt Express 13(18):7052–7062PubMedGoogle Scholar
  88. Lippincott-Schwartz J, Patterson GH (2009) Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging. Trends Cell Biol 19(11):555–565. doi: 10.1016/j.tcb.2009.09.003 PubMedCentralPubMedGoogle Scholar
  89. Llopis J, McCaffery JM, Miyawaki A, Farquhar MG, Tsien RY (1998) Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. Proc Natl Acad Sci USA 95(12):6803–6808PubMedCentralPubMedGoogle Scholar
  90. Lukyanov KA, Fradkov AF, Gurskaya NG, Matz MV, Labas YA, Savitsky AP, Markelov ML, Zaraisky AG, Zhao X, Fang Y, Tan W, Lukyanov SA (2000) Natural animal coloration can Be determined by a nonfluorescent green fluorescent protein homolog. J Biol Chem 275(34):25879–25882. doi: 10.1074/jbc.C000338200 PubMedGoogle Scholar
  91. Lukyanov KA, Chudakov DM, Lukyanov S, Verkhusha VV (2005) Innovation: photoactivatable fluorescent proteins. Nat Rev Mol Cell Biol 6(11):885–891. doi: 10.1038/nrm1741 PubMedGoogle Scholar
  92. Lummer M, Humpert F, Wiedenlubbert M, Sauer M, Schuttpelz M, Staiger D (2013) A new set of reversibly photoswitchable fluorescent proteins for use in transgenic plants. Mol Plant 6(5):1518–1530. doi: 10.1093/mp/sst040 PubMedGoogle Scholar
  93. Manley S, Gillette JM, Patterson GH, Shroff H, Hess HF, Betzig E, Lippincott-Schwartz J (2008) High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat Methods 5(2):155–157. doi: 10.1038/nmeth.1176 PubMedGoogle Scholar
  94. Manley S, Gillette JM, Lippincott-Schwartz J (2010) Single-particle tracking photoactivated localization microscopy for mapping single-molecule dynamics. Methods Enzymol 475:109–120. doi: 10.1016/S0076-6879(10)75005-9 PubMedCentralPubMedGoogle Scholar
  95. Mao S, Benninger RK, Yan Y, Petchprayoon C, Jackson D, Easley CJ, Piston DW, Marriott G (2008) Optical lock-in detection of FRET using synthetic and genetically encoded optical switches. Biophys J 94(11):4515–4524. doi: 10.1529/biophysj.107.124859 PubMedCentralPubMedGoogle Scholar
  96. Marriott G, Mao S, Sakata T, Ran J, Jackson DK, Petchprayoon C, Gomez TJ, Warp E, Tulyathan O, Aaron HL, Isacoff EY, Yan Y (2008) Optical lock-in detection imaging microscopy for contrast-enhanced imaging in living cells. Proc Natl Acad Sci USA 105(46):17789–17794. doi: 10.1073/pnas.0808882105 PubMedCentralPubMedGoogle Scholar
  97. Martin K, Kopperud K, Chakrabarty R, Banerjee R, Brooks R, Goodin MM (2009) Transient expression in Nicotiana benthamiana fluorescent marker lines provides enhanced definition of protein localization, movement and interactions in planta. Plant J: Cell Mol Biol 59(1):150–162. doi: 10.1111/j.1365-313X.2009.03850.x Google Scholar
  98. Mathur J, Griffiths S, Barton K, Schattat MH (2012) Green-to-red photoconvertible mEosFP-aided live imaging in plants. Methods Enzymol 504:163–181. doi: 10.1016/B978-0-12-391857-4.00008-2 PubMedGoogle Scholar
  99. Matsuda T, Miyawaki A, Nagai T (2008) Direct measurement of protein dynamics inside cells using a rationally designed photoconvertible protein. Nat Methods 5(4):339–345. doi: 10.1038/nmeth.1193 PubMedGoogle Scholar
  100. Matsuda T, Horikawa K, Saito K, Nagai T (2013) Highlighted Ca2+ imaging with a genetically encoded ‘caged’ indicator. Sci Rep 3:1398. doi: 10.1038/srep01398 PubMedCentralPubMedGoogle Scholar
  101. Mavrakis M, Rikhy R, Lippincott-Schwartz J (2009) Plasma membrane polarity and compartmentalization are established before cellularization in the fly embryo. Dev Cell 16(1):93–104. doi: 10.1016/j.devcel.2008.11.003 PubMedCentralPubMedGoogle Scholar
  102. Mazza D, Braeckmans K, Cella F, Testa I, Vercauteren D, Demeester J, De Smedt SS, Diaspro A (2008) A new FRAP/FRAPa method for three-dimensional diffusion measurements based on multiphoton excitation microscopy. Biophys J 95(7):3457–3469. doi: 10.1529/biophysj.108.133637 PubMedCentralPubMedGoogle Scholar
  103. McAnaney TB, Park ES, Hanson GT, Remington SJ, Boxer SG (2002) Green fluorescent protein variants as ratiometric dual emission pH sensors. 2. Excited-state dynamics. Biochemistry 41(52):15489–15494. doi: 10.1021/Bi026610o PubMedGoogle Scholar
  104. McAnaney TB, Shi X, Abbyad P, Jung H, Remington SJ, Boxer SG (2005) Green fluorescent protein variants as ratiometric dual emission pH sensors. 3. Temperature dependence of proton transfer. Biochemistry 44(24):8701–8711. doi: 10.1021/bi050132a PubMedGoogle Scholar
  105. McEvoy AL, Hoi H, Bates M, Platonova E, Cranfill PJ, Baird MA, Davidson MW, Ewers H, Liphardt J, Campbell RE (2012) mMaple: a photoconvertible fluorescent protein for use in multiple imaging modalities. PLoS ONE 7(12):e51314. doi: 10.1371/journal.pone.0051314 PubMedCentralPubMedGoogle Scholar
  106. McKinney SA, Murphy CS, Hazelwood KL, Davidson MW, Looger LL (2009) A bright and photostable photoconvertible fluorescent protein. Nat Methods 6(2):131–133. doi: 10.1038/nmeth.1296 PubMedCentralPubMedGoogle Scholar
  107. Miesenbock G, De Angelis DA, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394(6689):192–195. doi: 10.1038/28190 PubMedGoogle Scholar
  108. Miyawaki A (2005) Innovations in the imaging of brain functions using fluorescent proteins. Neuron 48(2):189–199. doi: 10.1016/j.neuron.2005.10.003 PubMedGoogle Scholar
  109. Mizuno H, Mal TK, Walchli M, Kikuchi A, Fukano T, Ando R, Jeyakanthan J, Taka J, Shiro Y, Ikura M, Miyawaki A (2008) Light-dependent regulation of structural flexibility in a photochromic fluorescent protein. Proc Natl Acad Sci USA 105(27):9227–9232. doi: 10.1073/pnas.0709599105 PubMedCentralPubMedGoogle Scholar
  110. Mizuno H, Dedecker P, Ando R, Fukano T, Hofkens J, Miyawaki A (2010a) Higher resolution in localization microscopy by slower switching of a photochromic protein. Photochem Photobiol Sci 9(2):239–248. doi: 10.1039/b9pp00124g PubMedGoogle Scholar
  111. Mizuno H, Mal TK, Walchli M, Fukano T, Ikura M, Miyawaki A (2010b) Molecular basis of photochromism of a fluorescent protein revealed by direct 13C detection under laser illumination. J Biomol NMR 48(4):237–246. doi: 10.1007/s10858-010-9453-5 PubMedGoogle Scholar
  112. Moerner WE (2002) Single-molecule optical spectroscopy of autofluorescent proteins. J Chem Phys 117(24):10925–10937Google Scholar
  113. Mortensen KI, Churchman LS, Spudich JA, Flyvbjerg H (2010) Optimized localization analysis for single-molecule tracking and super-resolution microscopy. Nat Methods 7(5):377–381. doi: 10.1038/nmeth.1447 PubMedCentralPubMedGoogle Scholar
  114. Muranyi W, Malkusch S, Muller B, Heilemann M, Krausslich HG (2013) Super-resolution microscopy reveals specific recruitment of HIV-1 envelope proteins to viral assembly sites dependent on the envelope C-terminal tail. PLoS Pathog 9(2):e1003198. doi: 10.1371/journal.ppat.1003198 PubMedCentralPubMedGoogle Scholar
  115. Mutoh T, Miyata T, Kashiwagi S, Miyawaki A, Ogawa M (2006) Dynamic behavior of individual cells in developing organotypic brain slices revealed by the photoconvertable protein Kaede. Exp Neurol 200(2):430–437. doi: 10.1016/j.expneurol.2006.03.022 PubMedGoogle Scholar
  116. Nguyen Bich N, Moeyaert B, Van Hecke K, Dedecker P, Mizuno H, Hofkens J, Van Meervelt L (2012) Structural basis for the influence of a single mutation K145 N on the oligomerization and photoswitching rate of Dronpa. Acta Crystallogr D Biol Crystallogr 68(Pt 12):1653–1659. doi: 10.1107/S0907444912039686 PubMedGoogle Scholar
  117. Nienhaus K, Nienhaus GU (2013) Fluorescent proteins for live-cell imaging with super-resolution. Chem Soc Rev. doi: 10.1039/c3cs60171d Google Scholar
  118. Nienhaus GU, Nienhaus K, Holzle A, Ivanchenko S, Renzi F, Oswald F, Wolff M, Schmitt F, Rocker C, Vallone B, Weidemann W, Heilker R, Nar H, Wiedenmann J (2006) Photoconvertible fluorescent protein EosFP: biophysical properties and cell biology applications. Photochem Photobiol 82(2):351–358. doi: 10.1562/2005-05-19-RA-533 PubMedGoogle Scholar
  119. Niu L, Yu J (2008) Investigating intracellular dynamics of FtsZ cytoskeleton with photoactivation single-molecule tracking. Biophys J 95(4):2009–2016. doi: 10.1529/biophysj.108.128751 PubMedCentralPubMedGoogle Scholar
  120. Nowotschin S, Hadjantonakis AK (2009) Use of KikGR a photoconvertible green-to-red fluorescent protein for cell labeling and lineage analysis in ES cells and mouse embryos. BMC Dev Biol 9(1):49. doi: 10.1186/1471-213X-9-49 PubMedCentralPubMedGoogle Scholar
  121. Patterson GH (2011) Photoactivation and imaging of optical highlighter fluorescent proteins. Current protocols in cytometry/editorial board. J Paul Robinson, managing editor [et al] Chapter 12: Unit 12 23. doi: 10.1002/0471142956.cy1223s57
  122. Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297(5588):1873–1877. doi: 10.1126/science.1074952 PubMedGoogle Scholar
  123. Piston DW, Kremers GJ (2007) Fluorescent protein FRET: the good, the bad and the ugly. Trends Biochem Sci 32(9):407–414. doi: 10.1016/j.tibs.2007.08.003 PubMedGoogle Scholar
  124. Pletnev S, Subach FV, Dauter Z, Wlodawer A, Verkhusha VV (2012) A structural basis for reversible photoswitching of absorbance spectra in red fluorescent protein rsTagRFP. J Mol Biol 417(3):144–151. doi: 10.1016/j.jmb.2012.01.044 PubMedCentralPubMedGoogle Scholar
  125. Post JN, Lidke KA, Rieger B, Arndt-Jovin DJ (2005) One- and two-photon photoactivation of a paGFP-fusion protein in live Drosophila embryos. FEBS Lett 579(2):325–330. doi: 10.1016/j.febslet.2004.11.092 PubMedGoogle Scholar
  126. Rego EH, Shao L, Macklin JJ, Winoto L, Johansson GA, Kamps-Hughes N, Davidson MW, Gustafsson MG (2012) Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. Proc Natl Acad Sci USA 109(3):E135–E143. doi: 10.1073/pnas.1107547108 PubMedCentralPubMedGoogle Scholar
  127. Richert S, Kleinecke S, Gunther J, Schaumburg F, Edgar J, Nienhaus GU, Nave KA, Kassmann CM (2013) In vivo labeling of peroxisomes by photoconvertible mEos2 in myelinating glia of mice. Biochimie. doi: 10.1016/j.biochi.2013.10.022 PubMedGoogle Scholar
  128. Robinson JM, Takizawa T (2009) Correlative fluorescence and electron microscopy in tissues: immunocytochemistry. J Microsc 235(3):259–272. doi: 10.1111/j.1365-2818.2009.03221.x PubMedGoogle Scholar
  129. Roy A, Field MJ, Adam V, Bourgeois D (2011) The nature of transient dark states in a photoactivatable fluorescent protein. J Am Chem Soc 133(46):18586–18589. doi: 10.1021/ja2085355 PubMedGoogle Scholar
  130. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795. doi: 10.1038/nmeth929 PubMedCentralPubMedGoogle Scholar
  131. Sato T, Takahoko M, Okamoto H (2006) HuC:Kaede, a useful tool to label neural morphologies in networks in vivo. Genesis 44(3):136–142. doi: 10.1002/gene.20196 PubMedGoogle Scholar
  132. Schafer LV, Groenhof G, Boggio-Pasqua M, Robb MA, Grubmuller H (2008) Chromophore protonation state controls photoswitching of the fluoroprotein asFP595. PLoS Comput Biol 4(3):e1000034. doi: 10.1371/journal.pcbi.1000034 PubMedCentralPubMedGoogle Scholar
  133. Schattat MH, Griffiths S, Mathur N, Barton K, Wozny MR, Dunn N, Greenwood JS, Mathur J (2012) Differential coloring reveals that plastids do not form networks for exchanging macromolecules. Plant Cell 24(4):1465–1477. doi: 10.1105/tpc.111.095398 PubMedCentralPubMedGoogle Scholar
  134. Schenkel M, Sinclair AM, Johnstone D, Bewley JD, Mathur J (2008) Visualizing the actin cytoskeleton in living plant cells using a photo-convertible mEos:FABD-mTn fluorescent fusion protein. Plant Methods 4(1):21. doi: 10.1186/1746-4811-4-21 PubMedCentralPubMedGoogle Scholar
  135. Schwentker MA, Bock H, Hofmann M, Jakobs S, Bewersdorf J, Eggeling C, Hell SW (2007) Wide-field subdiffraction RESOLFT microscopy using fluorescent protein photoswitching. Microsc Res Tech 70(3):269–280. doi: 10.1002/jemt.20443 PubMedGoogle Scholar
  136. Sengupta P, Lippincott-Schwartz J (2012) Quantitative analysis of photoactivated localization microscopy (PALM) datasets using pair-correlation analysis. BioEssays: News Rev Mol Cell Dev Biol 34(5):396–405. doi: 10.1002/bies.201200022 Google Scholar
  137. Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22(12):1567–1572. doi: 10.1038/nbt1037 PubMedGoogle Scholar
  138. Shaner NC, Lin MZ, McKeown MR, Steinbach PA, Hazelwood KL, Davidson MW, Tsien RY (2008) Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat Methods 5(6):545–551. doi: 10.1038/nmeth.1209 PubMedCentralPubMedGoogle Scholar
  139. Shannon CE (1949) Communication in the presence of noise. Proc Inst Radio Eng 37(1):10–21Google Scholar
  140. Shigematsu Y, Yoshida N, Miwa Y, Mizobuti A, Suzuki Y, Tanimoto Y, Takahashi S, Kunita S, Sugiyama F, Yagami K (2007) Novel embryonic stem cells expressing tdKaede protein photoconvertible from green to red fluorescence. Int J Mol Med 20(4):439–444PubMedGoogle Scholar
  141. Shroff H, Galbraith CG, Galbraith JA, White H, Gillette J, Olenych S, Davidson MW, Betzig E (2007) Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proc Natl Acad Sci USA 104(51):20308–20313. doi: 10.1073/pnas.0710517105 PubMedCentralPubMedGoogle Scholar
  142. Shroff H, Galbraith CG, Galbraith JA, Betzig E (2008) Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat Methods 5(5):417–423. doi: 10.1038/nmeth.1202 PubMedGoogle Scholar
  143. Sinnecker D, Voigt P, Hellwig N, Schaefer M (2005) Reversible photobleaching of enhanced green fluorescent proteins. Biochemistry 44(18):7085–7094. doi: 10.1021/bi047881x PubMedGoogle Scholar
  144. Stiel AC, Trowitzsch S, Weber G, Andresen M, Eggeling C, Hell SW, Jakobs S, Wahl MC (2007) 1.8 A bright-state structure of the reversibly switchable fluorescent protein Dronpa guides the generation of fast switching variants. Biochem J 402(1):35–42. doi: 10.1042/BJ20061401 PubMedCentralPubMedGoogle Scholar
  145. Stiel AC, Andresen M, Bock H, Hilbert M, Schilde J, Schonle A, Eggeling C, Egner A, Hell SW, Jakobs S (2008) Generation of monomeric reversibly switchable red fluorescent proteins for far-field fluorescence nanoscopy. Biophys J 95(6):2989–2997. doi: 10.1529/biophysj.108.130146 PubMedCentralPubMedGoogle Scholar
  146. Subach FV, Malashkevich VN, Zencheck WD, Xiao H, Filonov GS, Almo SC, Verkhusha VV (2009a) Photoactivation mechanism of PAmCherry based on crystal structures of the protein in the dark and fluorescent states. Proc Natl Acad Sci USA 106(50):21097–21102. doi: 10.1073/pnas.0909204106 PubMedCentralPubMedGoogle Scholar
  147. Subach FV, Patterson GH, Manley S, Gillette JM, Lippincott-Schwartz J, Verkhusha VV (2009b) Photoactivatable mCherry for high-resolution two-color fluorescence microscopy. Nat Methods 6(2):153–159. doi: 10.1038/nmeth.1298 PubMedCentralPubMedGoogle Scholar
  148. Subach FV, Patterson GH, Renz M, Lippincott-Schwartz J, Verkhusha VV (2010a) Bright monomeric photoactivatable red fluorescent protein for two-color super-resolution sptPALM of live cells. J Am Chem Soc 132(18):6481–6491. doi: 10.1021/ja100906g PubMedCentralPubMedGoogle Scholar
  149. Subach FV, Zhang L, Gadella TW, Gurskaya NG, Lukyanov KA, Verkhusha VV (2010b) Red fluorescent protein with reversibly photoswitchable absorbance for photochromic FRET. Chem Biol 17(7):745–755. doi: 10.1016/j.chembiol.2010.05.022 PubMedCentralPubMedGoogle Scholar
  150. Subach OM, Patterson GH, Ting LM, Wang Y, Condeelis JS, Verkhusha VV (2011) A photoswitchable orange-to-far-red fluorescent protein. PSmOrange. Nat Methods 8(9):771–777. doi: 10.1038/nmeth.1664 PubMedCentralPubMedGoogle Scholar
  151. Subach OM, Entenberg D, Condeelis JS, Verkhusha VV (2012) A FRET-facilitated photoswitching using an orange fluorescent protein with the fast photoconversion kinetics. J Am Chem Soc 134(36):14789–14799. doi: 10.1021/ja3034137 PubMedCentralPubMedGoogle Scholar
  152. Tatavarty V, Kim EJ, Rodionov V, Yu J (2009) Investigating sub-spine actin dynamics in rat hippocampal neurons with super-resolution optical imaging. PLoS ONE 4(11):e7724. doi: 10.1371/journal.pone.0007724 PubMedCentralPubMedGoogle Scholar
  153. Tian Z, Li AD (2013) Photoswitching-enabled novel optical imaging: innovative solutions for real-world challenges in fluorescence detections. Acc Chem Res 46(2):269–279. doi: 10.1021/ar300108d PubMedGoogle Scholar
  154. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544. doi: 10.1146/annurev.biochem.67.1.509 PubMedGoogle Scholar
  155. Tsutsui H, Karasawa S, Shimizu H, Nukina N, Miyawaki A (2005) Semi-rational engineering of a coral fluorescent protein into an efficient highlighter. EMBO Rep 6(3):233–238. doi: 10.1038/sj.embor.7400361 PubMedCentralPubMedGoogle Scholar
  156. van de Linde S, Krstic I, Prisner T, Doose S, Heilemann M, Sauer M (2011) Photoinduced formation of reversible dye radicals and their impact on super-resolution imaging. Photochem Photobiol Sci 10(4):499–506. doi: 10.1039/c0pp00317d PubMedGoogle Scholar
  157. van Thor JJ, Gensch T, Hellingwerf KJ, Johnson LN (2002) Phototransformation of green fluorescent protein with UV and visible light leads to decarboxylation of glutamate 222. Nat Struct Biol 9(1):37–41. doi: 10.1038/nsb739 PubMedGoogle Scholar
  158. Wang F, Liu P, Zhang Q, Zhu J, Chen T, Arimura S, Tsutsumi N, Lin J (2012) Phosphorylation and ubiquitination of dynamin-related proteins (AtDRP3A/3B) synergically regulate mitochondrial proliferation during mitosis. Plant J: Cell Mol Biol 72(1):43–56. doi: 10.1111/j.1365-313X.2012.05052.x Google Scholar
  159. Watanabe S, Punge A, Hollopeter G, Willig KI, Hobson RJ, Davis MW, Hell SW, Jorgensen EM (2011) Protein localization in electron micrographs using fluorescence nanoscopy. Nat Methods 8(1):80–84. doi: 10.1038/nmeth.1537 PubMedCentralPubMedGoogle Scholar
  160. Welman A, Serrels A, Brunton VG, Ditzel M, Frame MC (2010) Two-color photoactivatable probe for selective tracking of proteins and cells. J Biol Chem 285(15):11607–11616. doi: 10.1074/jbc.M110.102392 PubMedCentralPubMedGoogle Scholar
  161. Wiedenmann J, Nienhaus GU (2006) Live-cell imaging with EosFP and other photoactivatable marker proteins of the GFP family. Expert Rev Proteomics 3(3):361–374. doi: 10.1586/14789450.3.3.361 PubMedGoogle Scholar
  162. Wiedenmann J, Ivanchenko S, Oswald F, Schmitt F, Rocker C, Salih A, Spindler KD, Nienhaus GU (2004) EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. Proc Natl Acad Sci USA 101(45):15905–15910. doi: 10.1073/pnas.0403668101 PubMedCentralPubMedGoogle Scholar
  163. Wiedenmann J, Gayda S, Adam V, Oswald F, Nienhaus K, Bourgeois D, Nienhaus GU (2011) From EosFP to mIrisFP: structure-based development of advanced photoactivatable marker proteins of the GFP-family. J Biophoton 4(6):377–390. doi: 10.1002/jbio.201000122 Google Scholar
  164. Willig KI, Kellner RR, Medda R, Hein B, Jakobs S, Hell SW (2006) Nanoscale resolution in GFP-based microscopy. Nat Methods 3(9):721–723. doi: 10.1038/nmeth922 PubMedGoogle Scholar
  165. Wong FH, Banks DS, Abu-Arish A, Fradin C (2007) A molecular thermometer based on fluorescent protein blinking. J Am Chem Soc 129(34):10302–10303. doi: 10.1021/ja0715905 PubMedGoogle Scholar
  166. Wozny M, Schattat MH, Mathur N, Barton K, Mathur J (2012) Color recovery after photoconversion of H2B:mEosFP allows detection of increased nuclear DNA content in developing plant cells. Plant Physiol 158(1):95–106. doi: 10.1104/pp.111.187062 PubMedCentralPubMedGoogle Scholar
  167. Wu S, Koizumi K, Macrae-Crerar A, Gallagher KL (2011) Assessing the utility of photoswitchable fluorescent proteins for tracking intercellular protein movement in the Arabidopsis root. PLoS ONE 6(11):e27536. doi: 10.1371/journal.pone.0027536 PubMedCentralPubMedGoogle Scholar
  168. Zhang M, Chang H, Zhang Y, Yu J, Wu L, Ji W, Chen J, Liu B, Lu J, Liu Y, Zhang J, Xu P, Xu T (2012) Rational design of true monomeric and bright photoactivatable fluorescent proteins. Nat Methods 9(7):727–729. doi: 10.1038/nmeth.2021 PubMedGoogle Scholar
  169. Zhong H (2010) Photoactivated localization microscopy (PALM): an optical technique for achieving ~10-nm resolution. Cold Spring Harbor protocols 2010 (12):pdb top91. doi: 10.1101/pdb.top91
  170. Zhou XX, Chung HK, Lam AJ, Lin MZ (2012) Optical control of protein activity by fluorescent protein domains. Science 338(6108):810–814. doi: 10.1126/science.1226854 PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institut de Biologie Structurale (IBS)Univ. Grenoble AlpesGrenobleFrance
  2. 2.IBSCNRSGrenobleFrance
  3. 3.CEA, DSVIBSGrenobleFrance

Personalised recommendations