Advertisement

Histochemistry and Cell Biology

, Volume 141, Issue 5, pp 543–550 | Cite as

Subcellular localization of NAPE-PLD and DAGL-α in the ventromedial nucleus of the hypothalamus by a preembedding immunogold method

  • Leire Reguero
  • Nagore Puente
  • Izaskun Elezgarai
  • Almudena Ramos-Uriarte
  • Inmaculada Gerrikagoitia
  • José-Luis Bueno-López
  • Francisco Doñate
  • Pedro GrandesEmail author
Original Paper

Abstract

The hypothalamus and the endocannabinoid system are important players in the regulation of energy homeostasis. In a previous study, we described the ultrastructural distribution of CB1 receptors in GABAergic and glutamatergic synaptic terminals of the dorsomedial region of the ventromedial nucleus of the hypothalamus (VMH). However, the specific localization of the enzymes responsible for the synthesis of the two main endocannabinoids in the hypothalamus is not known. The objective of this study was to investigate the precise subcellular distribution of N-arachidonoylphospatidylethanolamine phospholipase D (NAPE-PLD) and diacylglycerol lipase α (DAGL-α) in the dorsomedial VMH of wild-type mice by a high resolution immunogold electron microscopy technique. Knock-out mice for each enzyme were used to validate the specificity of the antibodies. NAPE-PLD was localized presynaptically and postsynaptically but showed a preferential distribution in dendrites. DAGL-α was mostly postsynaptic in dendrites and dendritic spines. These anatomical results contribute to a better understanding of the endocannabinoid modulation in the VMH nucleus. Furthermore, they support the idea that the dorsomedial VMH displays the necessary machinery for the endocannabinoid-mediated modulation of synaptic transmission of brain circuitries that regulate important hypothalamic functions such as feeding behaviors.

Keywords

Endocannabinoids Synthesizing enzymes Energy homeostasis Immunocytochemistry Electron microscopy 

Notes

Acknowledgments

This work has been supported by The Basque Country Government Grant BCG IT764-13; Ministerio de Economía y Competitividad (MINECO) Grant BFU2012-33334; University of the Basque Country UPV/EHU UFI11/41 and Red de Transtornos Adictivos (RTA)—Instituto de Salud Carlos III grant RD12/0028/0004. L. Reguero was supported by a Postdoctoral Specialization Contract from the University of the Basque Country UPV/EHU.

References

  1. Basavarajappa BS (2007) Critical enzymes involved in endocannabinoid metabolism. Protein Pept Lett 14:237–246PubMedCentralPubMedCrossRefGoogle Scholar
  2. Bellocchio L, Lafenêtre P, Cannich A, Cota D, Puente N, Grandes P, Chaouloff F, Piazza PV, Marsicano G (2010) Bimodal control of stimulated food intake by the endocannabinoid system. Nat Neurosci 13:281–283PubMedCrossRefGoogle Scholar
  3. Berthoud HR (2002) Multiple neural systems controlling food intake and body weight. Neurosci Biobehav Rev 26:393–428PubMedCrossRefGoogle Scholar
  4. Chávez AE, Chiu CQ, Castillo PE (2010) TRPV1 activation by endogenous anandamide triggers postsynaptic long-term depression in dentate gyrus. Nat Neurosci 13(12):1511–1518PubMedCentralPubMedCrossRefGoogle Scholar
  5. Colombo G, Agabio R, Diaz G, Lobina C, Reali R, Gessa GL (1998) Appetite suppression and weight loss after the cannabinoid antagonist SR 141716. Life Sci 63(8):PL113–PL117Google Scholar
  6. Cota D, Genghini S, Pasquali R, Pagotto U (2003) Antagonizing the cannabinoid receptor type 1: a dual way to fight obesity. J Endocrinol Invest 26(10):1041–1044PubMedCrossRefGoogle Scholar
  7. Cota D, Woods S (2005) The role of the endocannabinoid system in the regulation of energy homeostasis. Curr Opin Endocrinol Diabetes 12:338–351CrossRefGoogle Scholar
  8. Cristino L, Starowicz K, De Petrocellis L, Morishita J, Ueda N, Guglielmotti V, Di Marzo V (2008) Immunohistochemical localization of anabolic and catabolic enzymes for anandamide and other putative endovanilloids in the hippocampus and cerebellar cortex of the mouse brain. Neuroscience 151:955–968PubMedCrossRefGoogle Scholar
  9. De Petrocellis L, Cascio MG, Di Marzo V (2004) The endocannabinoid system: a general view and latest additions. Br J Pharmacol 141:765–774PubMedCentralPubMedCrossRefGoogle Scholar
  10. Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946–1949PubMedCrossRefGoogle Scholar
  11. Di Marzo V, Matias I (2005) Endocannabinoid control of food intake and energy balance. Nat Neurosci 8:585–589PubMedCrossRefGoogle Scholar
  12. Di Marzo V, De Petrocellis L, Bisogno T (2001) Endocannabinoids Part I: molecular basis of endocannabinoid formation, action and inactivation and development of selective inhibitors. Expert Opin Ther Targets 5(2):241–265PubMedCrossRefGoogle Scholar
  13. Egertová M, Giang DK, Cravatt BF, Elphick MR (1998) A new perspective on cannabinoid signalling: complementary localization of fatty acid amide hydrolase and the CB1 receptor in rat brain. Proc Biol Sci 265:2081–2085PubMedCentralPubMedCrossRefGoogle Scholar
  14. Egertová M, Cravatt BF, Elphick MR (2003) Comparative analysis of fatty acid amide hydrolase and cb(1) cannabinoid receptor expression in the mouse brain: evidence of a widespread role for fatty acid amide hydrolase in regulation of endocannabinoid signaling. Neuroscience 119:481–496PubMedCrossRefGoogle Scholar
  15. Egertová M, Simon GM, Cravatt BF, Elphick MR (2008) Localization of N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD) expression in mouse brain: a new perspective on N-acylethanolamines as neural signaling molecules. J Comp Neurol 506:604–615PubMedCrossRefGoogle Scholar
  16. Grueter BA, Brasnjo G, Malenka RC (2010) Postsynaptic TRPV1 triggers cell type-specific long-term depression in the nucleus accumbens. Nat Neurosci 13:1519–1525PubMedCentralPubMedCrossRefGoogle Scholar
  17. Gulyas AI, Cravatt BF, Bracey MH, Dinh TP, Piomelli D, Boscia F, Freund TF (2004) Segregation of two endocannabinoid-hydrolyzing enzymes into pre- and postsynaptic compartments in the rat hippocampus, cerebellum and amygdala. Eur J Neurosci 20:441–458PubMedCrossRefGoogle Scholar
  18. Hegyi Z, Holló K, Kis G, Mackie K, Antal M (2012) Endocannabinoid system in the adult rat circumventricular areas: an immunohistochemical study. Glia 60:1316–1329PubMedCentralPubMedCrossRefGoogle Scholar
  19. Jamshidi N, Taylor DA (2001) Anandamide administration into the ventromedial hypothalamus stimulates appetite in rats. Br J Pharmacol 134:1151–1154PubMedCentralPubMedCrossRefGoogle Scholar
  20. Kano M, Ohno-Shosaku T, Hashimotodani Y, Uchigashima M, Watanabe M (2009) Endocannabinoid-mediated control of synaptic transmission. Physiol Rev 89:309–380PubMedCrossRefGoogle Scholar
  21. Katona I, Urbán GM, Wallace M, Ledent C, Jung KM, Piomelli D, Mackie K, Freund TF (2006) Molecular composition of the endocannabinoid system at glutamatergic synapses. J Neurosci 26:5628–5637PubMedCentralPubMedCrossRefGoogle Scholar
  22. Kim KW, Jo YH, Zhao L, Stallings NR, Chua SC Jr et al (2008) Steroidogenic factor 1 regulates expression of the cannabinoid receptor 1 in the ventromedial hypothalamic nucleus. Mol Endocrinol 22:1950–1961PubMedCentralPubMedCrossRefGoogle Scholar
  23. Kirkham TC, Williams CM, Fezza F, Di Marzo V (2002) Endocannabinoid levels in rat limbic forebrain and hypothalamus in relation to fasting, feeding and satiation: stimulation of eating by 2-arachidonoyl glycerol. Br J Pharmacol 136:550–557PubMedCentralPubMedCrossRefGoogle Scholar
  24. Lafourcade M, Elezgarai I, Mato S, Bakiri Y, Grandes P, Manzoni OJ (2007) Molecular components and functions of the endocannabinoid system in mouse prefrontal cortex. PLoS ONE 2:e709PubMedCentralPubMedCrossRefGoogle Scholar
  25. Leung D, Saghatelian A, Simon GM, Cravatt BF (2006) Inactivation of N-acyl phosphatidylethanolamine phospholipase D reveals multiple mechanisms for the biosynthesis of endocannabinoids. Biochemistry 45:4720–4726PubMedCentralPubMedCrossRefGoogle Scholar
  26. Matias I, Di Marzo V (2007) Endocannabinoids and the control of energy balance. Trends Endocrinol Metab 18:27–37PubMedCrossRefGoogle Scholar
  27. McClellan KM, Parker KL, Tobet S (2006) Development of the ventromedial nucleus of the hypothalamus. Front Neuroendocrinol 27:193–209PubMedCrossRefGoogle Scholar
  28. Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR, Gopher A, Almog S, Martin BR, Compton DR, Pertwee RG, Griffin G, Bayewitch M, Barg J, Vogel Z (1995) Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 50:83–90PubMedCrossRefGoogle Scholar
  29. Morishita J, Okamoto Y, Tsuboi K, Ueno M, Sakamoto H, Maekawa N, Ueda N (2005) Regional distribution and age-dependent expression of N-acylphosphatidylethanolamine-hydrolyzing phospholipase D in rat brain. J Neurochem 94:753–762PubMedCrossRefGoogle Scholar
  30. Nyilas R, Dudok B, Urbán GM, Mackie K, Watanabe M, Cravatt BF, Freund TF, Katona I (2008) Enzymatic machinery for endocannabinoid biosynthesis associated with calcium stores in glutamatergic axon terminals. J Neurosci 28:1058–1063PubMedCrossRefGoogle Scholar
  31. Pagotto U, Marsicano G, Cota D, Lutz B, Pasquali R (2006) The emerging role of the endocannabinoid system in endocrine regulation and energy balance. Endocr Rev 27:73–100PubMedCrossRefGoogle Scholar
  32. Puente N, Cui Y, Lassalle O, Lafourcade M, Georges F, Venance L, Grandes P, Manzoni OJ (2011) Polymodal activation of the endocannabinoid system in the extended amygdala. Nat Neurosci 14:1542–1547PubMedCrossRefGoogle Scholar
  33. Reguero L, Puente N, Elezgarai I, Mendizabal-Zubiaga J, Canduela MJ, Buceta I, Ramos A, Suárez J, de Fonseca FR, Marsicano G, Grandes P (2011) GABAergic and cortical and subcortical glutamatergic axon terminals contain CB1 cannabinoid receptors in the ventromedial nucleus of the hypothalamus. PLoS ONE 6:e26167PubMedCentralPubMedCrossRefGoogle Scholar
  34. Sternson SM, Shepherd GM, Friedman JM (2005) Topographic mapping of VMH –> arcuate nucleus microcircuits and their reorganization by fasting. Nat Neurosci 8(10):1356–1363PubMedCrossRefGoogle Scholar
  35. Suárez J, Romero-Zerbo SY, Rivera P, Bermúdez-Silva FJ, Pérez J, De Fonseca FR, Fernández-Llebrez P (2010) Endocannabinoid system in the adult rat circumventricular areas: an immunohistochemical study. J Comp Neurol 518:3065–3085PubMedCrossRefGoogle Scholar
  36. Sugiura T, Kondo S, Sukagawa A, Nakane S, Shinoda A, Itoh K, Yamashita A, Waku K (1995) 2-Arachidonoyl-glycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun 215:89–97PubMedCrossRefGoogle Scholar
  37. Tanimura A, Yamazaki M, Hashimotodani Y, Uchigashima M, Kawata S, Abe M, Kita Y, Hashimoto K, Shimizu T, Watanabe M, Sakimura K, Kano M (2010) The endocannabinoid 2-arachidonoylglycerol produced by diacylglycerol lipase alpha mediates retrograde suppression of synaptic transmission. Neuron 65:320–327PubMedCrossRefGoogle Scholar
  38. Tanimura A, Uchigashima M, Yamazaki M, Uesaka N, Mikuni T, Abe M, Hashimoto K, Watanabe M, Sakimura K, Kano M (2012) Synapse type-independent degradation of the endocannabinoid 2-arachidonoylglycerol after retrograde synaptic suppression. Proc Natl Acad Sci USA 109:12195–12200PubMedCentralPubMedCrossRefGoogle Scholar
  39. Uchigashima M, Narushima M, Fukaya M, Katona I, Kano M, Watanabe M (2007) Subcellular arrangement of molecules for 2-arachidonoyl-glycerol-mediated retrograde signaling and its physiological contribution to synaptic modulation in the striatum. J Neurosci 27:3663–3676PubMedCrossRefGoogle Scholar
  40. Uchigashima M, Yamazaki M, Yamasaki M, Tanimura A, Sakimura K, Kano M, Watanabe M (2011) Molecular and morphological configuration for 2-arachidonoylglycerol-mediated retrograde signaling at mossy cell-granule cell synapses in the dentate gyrus. J Neurosci 31:7700–7714PubMedCrossRefGoogle Scholar
  41. Yoshida T, Fukaya M, Uchigashima M, Miura E, Kamiya H, Kano M, Watanabe M (2006) Localization of diacylglycerol lipase-alpha around postsynaptic spine suggests close proximity between production site of an endocannabinoid, 2-arachidonoyl-glycerol, and presynaptic cannabinoid CB1 receptor. J Neurosci 26:4740–4751PubMedCrossRefGoogle Scholar
  42. Yoshida T, Uchigashima M, Yamasaki M, Katona I, Yamazaki M, Sakimura K, Kano M, Yoshioka M, Watanabe M (2011) Unique inhibitory synapse with particularly rich endocannabinoid signaling machinery on pyramidal neurons in basal amygdaloid nucleus. Proc Natl Acad Sci USA 108:3059–3064PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Leire Reguero
    • 1
  • Nagore Puente
    • 1
  • Izaskun Elezgarai
    • 1
  • Almudena Ramos-Uriarte
    • 1
  • Inmaculada Gerrikagoitia
    • 1
  • José-Luis Bueno-López
    • 1
  • Francisco Doñate
    • 1
  • Pedro Grandes
    • 1
    Email author
  1. 1.Department of Neurosciences, Faculty of Medicine and DentistryUniversity of the Basque Country UPV/EHULeioaSpain

Personalised recommendations