Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Chemical imaging of lipid droplets in muscle tissues using hyperspectral coherent Raman microscopy

  • 894 Accesses

  • 24 Citations

Abstract

The accumulation of lipids in non-adipose tissues is attracting increasing attention due to its correlation with obesity. In muscle tissue, ectopic deposition of specific lipids is further correlated with pathogenic development of insulin resistance and type 2 diabetes. Most intramyocellular lipids are organized into lipid droplets (LDs), which are metabolically active organelles. In order to better understand the putative role of LDs in pathogenesis, insight into both the location of LDs and nearby chemistry of muscle tissue is very useful. Here, we demonstrate the use of label-free coherent anti-Stokes Raman scattering (CARS) microscopy in combination with multivariate, chemometric analysis to visualize intracellular lipid accumulations in ex vivo muscle tissue. Consistent with our previous results, hyperspectral CARS microscopy showed an increase in LDs in tissues where LD proteins were overexpressed, and further chemometric analysis showed additional features morphologically (and chemically) similar to mitochondria that colocalized with LDs. CARS imaging is shown to be a very useful method for label-free stratification of ectopic fat deposition and cellular organelles in fresh tissue sections with virtually no sample preparation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Aguer C, Mercier J, Man CYW, Metz L, Bordenave S, Lambert K, Jean E, Lantier L, Bounoua L, Brun JF, de Mauverger ER, Andreelli F, Foretz M, Kitzmann M (2010) Intramyocellular lipid accumulation is associated with permanent relocation ex vivo and in vitro of fatty acid translocase (FAT)/CD36 in obese patients. Diabetologia 53(6):1151–1163. doi:10.1007/s00125-010-1708-x

  2. Bosma M, Minnaard R, Sparks LM, Schaart G, Losen M, de Baets MH, Duimel H, Kersten S, Bickel PE, Schrauwen P, Hesselink MKC (2012) The lipid droplet coat protein perilipin 5 also localizes to muscle mitochondria. Histochem Cell Biol 137(2):205–216. doi:10.1007/s00418-011-0888-x

  3. Boxer SG, Kraft ML, Weber PK (2009) Advances in imaging secondary ion mass spectrometry for biological samples. Annu Rev Biophys 38(1):53–74. doi:10.1146/annurev.biophys.050708.133634

  4. Centonze VE, White JG (1998) Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging. Biophys J 75(4):2015–2024

  5. Chavez JA, Knotts TA, Wang LP, Li G, Dobrowsky RT, Florant GL, Summers SA (2003) A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids. J Biol Chem 278(12):10297–10303. doi:10.1074/jbc.M212307200

  6. Day JPR, Rago G, Domke KF, Velikov KP, Bonn M (2010) Label-free imaging of lipophilic bioactive molecules during lipid digestion by multiplex coherent anti-Stokes Raman scattering microspectroscopy. J Am Chem Soc 132(24):8433–8439. doi:10.1021/ja102069d

  7. Fletcher JS, Vickerman JC (2013) Secondary ion mass spectrometry: characterizing complex samples in two and three dimensions. Anal Chem 85(2):610–639. doi:10.1021/Ac303088m

  8. Gawlik KI, Durbeej M (2011) Skeletal muscle laminin and MDC1A: pathogenesis and treatment strategies. Skelet Muscle 1(1):9. doi:10.1186/2044-5040-1-9

  9. Goodpaster BH, Theriault R, Watkins SC, Kelley DE (2000) Intramuscular lipid content is increased in obesity and decreased by weight loss. Metab Clin Exp 49(4):467–472. doi:10.1016/s0026-0495(00)80010-4

  10. Goodpaster BH, He J, Watkins S, Kelley DE (2001) Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes. J Clin Endocrinolo Metab 86(12):5755–5761

  11. Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2(12):932–940. doi:10.1038/nmeth818

  12. Lee D-E, Kehlenbrink S, Lee H, Hawkins M, Yudkin JS (2009) Getting the message across: mechanisms of physiological cross talk by adipose tissue. Am J Physiol Endocrinol Metab 296(6):E1210–E1229. doi:10.1152/ajpendo.00015.2009

  13. Liu Y, Lee YJ, Cicerone MT (2009) Broadband CARS spectral phase retrieval using a time-domain Kramers-Kronig transform. Opt Lett 34(9):1363–1365

  14. Matthaus C, Chernenko T, Newmark JA, Warner CM, Diem M (2007) Label-free detection of mitochondrial distribution in cells by nonresonant Raman microspectroscopy. Biophys J 93(2):668–673. doi:10.1529/biophysj.106.102061

  15. Matthaus C, Krafft C, Dietzek B, Brehm BR, Lorkowski S, Popp J (2012) Noninvasive imaging of intracellular lipid metabolism in macrophages by Raman Microscopy in combination with stable isotopic labeling. Anal Chem 84(20):8549–8556. doi:10.1021/ac3012347

  16. Nielsen J, Mogensen M, Vind BF, Sahlin K, Hojlund K, Schroder HD, Ortenblad N (2010) Increased subsarcolemmal lipids in type 2 diabetes: effect of training on localization of lipids, mitochondria, and glycogen in sedentary human skeletal muscle. Am J Physiol Endocrinol Metab 298(3):E706–E713. doi:10.1152/ajpendo.00692.2009

  17. Pohling C, Buckup T, Motzkus M (2011) Hyperspectral data processing for chemoselective multiplex coherent anti-Stokes Raman scattering microscopy of unknown samples. J Biomed Opt 16(2). doi:10.1117/1.3533309

  18. Pohling C, Buckup T, Pagenstecher A, Motzkus M (2011b) Chemoselective imaging of mouse brain tissue via multiplex CARS microscopy. Biomed Optics Express 2(8):2110–2116. doi:10.1364/BOE.2.002110

  19. Puppels GJ, Demul FFM, Otto C, Greve J, Robertnicoud M, Arndtjovin DJ, Jovin TM (1990) Studying single living cells and chromosomes by confocal Raman microspectroscopy. Nature 347(6290):301–303. doi:10.1038/347301a0

  20. Rinia HA, Burger KNJ, Bonn M, Muller M (2008) Quantitative label-free imaging of lipid composition and packing of individual cellular lipid droplets using multiplex CARS microscopy. Biophys J 95(10):4908–4914. doi:10.1529/biophysj.108.137737

  21. Rompp A, Spengler B (2013) Mass spectrometry imaging with high resolution in mass and space. Histochem Cell Biol 139(6):759–783. doi:10.1007/s00418-013-1097-6

  22. Seppanen-Laakso T, Laakso I, Hiltunen R (2002) Analysis of fatty acids by gas chromatography, and its relevance to research on health and nutrition. Anal Chim Acta 465(1–2):39–62. doi:10.1016/s0003-2670(02)00397-5

  23. Shaw CS, Jones DA, Wagenmakers AJ (2008) Network distribution of mitochondria and lipid droplets in human muscle fibres. Histochem Cell Biol 129(1):65–72. doi:10.1007/s00418-007-0349-8

  24. Soboll S SR, Freisl M, Elbers R, Heldt HW (1976). In: JM Tager HS, JR Williamson (ed) Use of Isolated Liver Cells and Kidney Tubules in Metabolic Studies, North-Holland, Amsterdam and Oxford, pp 29–40

  25. Sollner TH (2007) Lipid droplets highjack SNAREs. Nat Cell Biol 9(11):1219–1220. doi:10.1038/ncb1107-1219

  26. Spangenburg EE, Pratt SJP, Wohlers LM, Lovering RM (2011) Use of BODIPY (493/503) to Visualize Intramuscular Lipid Droplets in Skeletal Muscle. J Biomed Biotechnol. doi:10.1155/2011/598358

  27. Srere PA (1980) The infrastructure of the mitochondrial matrix. Trends in biochemical sciences 5(5):120–121. doi:http://dx.doi.org/10.1016/0968-0004(80)90051-1

  28. Stratford S, Hoehn KL, Liu F, Summers SA (2004) Regulation of insulin action by ceramide: dual mechanisms linking ceramide accumulation to the inhibition of Akt/protein kinase B. J Biol Chem 279(35):36608–36615. doi:10.1074/jbc.M406499200

  29. Tolles WM, Nibler JW, McDonald JR, Harvey AB (1977) Review of theory and application of coherent anti-stokes Raman-spectroscopy (CARS). Appl Spectrosc 31(4):253–271. doi:10.1366/000370277774463625

  30. Vaandrager AB, Testerink N, Ajat M, Houweling M, Brouwers J, Pully VV, van Manen HWJ, Otto C, Helms JB (2009) Raman imaging and lipidomic analysis of lipid droplets in (activated) hepatic stellate cells. Chem Phys Lipids 160:S7–S8. doi:10.1016/j.chemphyslip.2009.06.109

  31. van Manen HJ, Kraan YM, Roos D, Otto C (2005) Single-cell Raman and fluorescence microscopy reveal the association of lipid bodies with phagosomes in leukocytes. Proc Natl Acad Sci USA 102(29):10159–10164. doi:10.1073/pnas.0502746102

  32. Vartiainen EM, Rinia HA, Muller M, Bonn M (2006) Direct extraction of Raman line-shapes from congested CARS spectra. Opt Express 14(8):3622–3630. doi:10.1364/oe.14.003622

  33. Wang H, Zhao J, Lee AM, Lui H, Zeng H (2012) Improving skin Raman spectral quality by fluorescence photobleaching. Photodiagn Photodyn Ther 9(4):299–302. doi:10.1016/j.pdpdt.2012.02.001

  34. Weigert R, Sramkova M, Parente L, Amornphimoltham P, Masedunskas A (2010) Intravital microscopy: a novel tool to study cell biology in living animals. Histochem Cell Biol 133(5):481–491. doi:10.1007/s00418-010-0692-z

Download references

Acknowledgments

This study was financially supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands Organization for the Advancement of Research) (M.B., G.R.), the NanoNextNL, a micro and nanotechnology consortium of the Government of the Netherlands and 130 partners (N.B., M.B., and M.K.C.L.), and a Marie Curie Foundation grant #CIG322284 (S.H.P). Ma.B. was financially supported by NUTRIM and the Graduate School VLAG. A Vici (Grant 918.96.618) grant for innovative research from the Netherlands Organization for Scientific Research supports the work of P.S.

G.R. and N.B. performed CARS experiments. P.L. and G.H. helped construct the experimental system. GR and GE did the multivariate analysis using HCA and PCA. A.G., Ma.B., and N.B. performed the fluorescence imaging. N.B., Ma.B., M.K.C.H., and P.S. provided samples. G.R., N.B., M.B., and S.H.P. wrote the paper. M.B. and S.H.P. supervised the research. All authors contributed to discussion of the results and revision of the paper. The authors wish to thank Dr. E. Cánovas and Dr. W. Rock for stimulating discussions and technical support.

Author information

Correspondence to Sapun H. Parekh.

Additional information

Nils Billecke and Gianluca Rago have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 433 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Billecke, N., Rago, G., Bosma, M. et al. Chemical imaging of lipid droplets in muscle tissues using hyperspectral coherent Raman microscopy. Histochem Cell Biol 141, 263–273 (2014). https://doi.org/10.1007/s00418-013-1161-2

Download citation

Keywords

  • Lipid droplet
  • Microscopy
  • Chemical imaging
  • Raman spectroscopy
  • Multivariate analysis
  • Hyperspectral