Skip to main content
Log in

Posttranslational modifications of desmin and their implication in biological processes and pathologies

  • Review
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Desmin, the muscle-specific intermediate filament, is involved in myofibrillar myopathies, dilated cardiomyopathy and muscle wasting. Desmin is the target of posttranslational modifications (PTMs) such as phosphorylation, ADP-ribosylation and ubiquitylation as well as nonenzymatic modifications such as glycation, oxidation and nitration. Several PTM target residues and their corresponding modifying enzymes have been discovered in human and nonhuman desmin. The major effect of phosphorylation and ADP-ribosylation is the disassembly of desmin filaments, while ubiquitylation of desmin leads to its degradation. The regulation of the desmin filament network by phosphorylation and ADP-ribosylation was found to be implicated in several major biological processes such as myogenesis, myoblast fusion, muscle contraction, muscle atrophy, cell division and possibly desmin interactions with its binding partners. Phosphorylation of desmin is also implicated in many forms of desmin-related myopathies (desminopathies). In this review, we summarize the findings on desmin PTMs and their implication in biological processes and pathologies, and discuss the current knowledge on the regulation of the desmin network by PTMs. We conclude that the desmin filament network can be seen as an intricate scaffold for muscle cell structure and biological processes and that its dynamics can be affected by PTMs. There are now precise tools to investigate PTMs and visualize cellular structures that have been underexploited in the study of desminopathies. Future studies should focus on these aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ADPRH:

ADP-ribosylarginine hydrolase

AGE:

Advanced glycation end product

AKAP:

A-kinase anchoring protein

ART:

Mono-ADP-ribosyltransferase

Aurora-B:

Aurora kinase B

Br-8-cAMP:

8-Bromo-cAMP

CaMKII:

Ca2+/calmodulin-dependent protein kinase II

CDK:

Cyclin-dependent kinase

CEL:

N-carboxyethyl-lysine

CML:

N-carboxymethyl-lysine

HNE:

4-Hydroxynonenal

IF:

Intermediate filament

MDAL:

Malondialdehyde-lysine

MFM:

Myofibrillar myopathy

N-tyr:

Nitrotyrosine

PAK:

p21-activated kinase

PKA:

Protein kinase A

PKC:

Protein kinase C

PLB:

Phospholamban

PP1:

Type 1 protein phosphatase

PTMs:

Posttranslational modifications

Rho-kinase:

Rho-associated kinase

T3:

Triiodothyronine

TRIM32:

E3 ubiquitin-protein ligase TRIM32

References

  • Ahmed EK, Rogowska-Wrzesinska A, Roepstorff P, Bulteau AL, Friguet B (2010) Protein modification and replicative senescence of WI-38 human embryonic fibroblasts. Aging Cell 9(2):252–272. doi:10.1111/j.1474-9726.2010.00555.x

    CAS  PubMed  Google Scholar 

  • Attaix D, Ventadour S, Codran A, Bechet D, Taillandier D, Combaret L (2005) The ubiquitin-proteasome system and skeletal muscle wasting. Essays Biochem 41:173–186. doi:10.1042/EB0410173

    CAS  PubMed  Google Scholar 

  • Bar H, Mucke N, Katus HA, Aebi U, Herrmann H (2007) Assembly defects of desmin disease mutants carrying deletions in the alpha-helical rod domain are rescued by wild type protein. J Struct Biol 158(1):107–115. doi:10.1016/j.jsb.2006.10.029

    PubMed  Google Scholar 

  • Bar H, Schopferer M, Sharma S, Hochstein B, Mucke N, Herrmann H, Willenbacher N (2010) Mutations in desmin’s carboxy-terminal “tail” domain severely modify filament and network mechanics. J Mol Biol 397(5):1188–1198. doi:10.1016/j.jmb.2010.02.024

    PubMed  Google Scholar 

  • Barany K, Polyak E, Barany M (1992a) Protein phosphorylation in arterial muscle contracted by high concentration of phorbol dibutyrate in the presence and absence of Ca2+. Biochim Biophys Acta 1134(3):233–241

    CAS  PubMed  Google Scholar 

  • Barany M, Polyak E, Barany K (1992b) Protein phosphorylation during the contraction-relaxation-contraction cycle of arterial smooth muscle. Arch Biochem Biophys 294(2):571–578

    CAS  PubMed  Google Scholar 

  • Berdeaux R, Stewart R (2012) cAMP signaling in skeletal muscle adaptation: hypertrophy, metabolism, and regeneration. Am J Physiol Endocrinol Metab 303(1):E1–E17. doi:10.1152/ajpendo.00555.2011

    CAS  PubMed  Google Scholar 

  • Birkenberger L, Ip W (1990) Properties of the desmin tail domain: studies using synthetic peptides and antipeptide antibodies. J Cell Biol 111(5 Pt 1):2063–2075

    CAS  PubMed  Google Scholar 

  • Blose SH (1979) Ten-nanometer filaments and mitosis: maintenance of structural continuity in dividing endothelial cells. Proc Natl Acad Sci USA 76(7):3372–3376

    CAS  PubMed  Google Scholar 

  • Boehm ME, Seidler J, Hahn B, Lehmann WD (2012) Site-specific degree of phosphorylation in proteins measured by liquid chromatography-electrospray mass spectrometry. Proteomics 12(13):2167–2178. doi:10.1002/pmic.201100561

    CAS  PubMed  Google Scholar 

  • Breckler J, Lazarides E (1982) Isolation of a new high molecular weight protein associated with desmin and vimentin filaments from avian embryonic skeletal muscle. J Cell Biol 92(3):795–806

    CAS  PubMed  Google Scholar 

  • Buscemi N, Foster DB, Neverova I, Van Eyk JE (2002) p21-activated kinase increases the calcium sensitivity of rat triton-skinned cardiac muscle fiber bundles via a mechanism potentially involving novel phosphorylation of troponin I. Circ Res 91(6):509–516

    CAS  PubMed  Google Scholar 

  • Capetanaki Y, Milner DJ, Weitzer G (1997) Desmin in muscle formation and maintenance: knockouts and consequences. Cell Struct Funct 22(1):103–116

    CAS  PubMed  Google Scholar 

  • Capetanaki Y, Bloch RJ, Kouloumenta A, Mavroidis M, Psarras S (2007) Muscle intermediate filaments and their links to membranes and membranous organelles. Exp Cell Res 313(10):2063–2076. doi:10.1016/j.yexcr.2007.03.033

    CAS  PubMed  Google Scholar 

  • Caron A, Chapon F (1999) Desmin phosphorylation abnormalities in cytoplasmic body and desmin-related myopathies. Muscle Nerve 22(8):1122–1125

    CAS  PubMed  Google Scholar 

  • Caron A, Gohel C, Mollaret K, Morello R, Chapon F (1999) Study of some components of the cytoskeleton in muscular disorders with nonspecific cytoplasmic bodies. Acta Neuropathol 97(3):267–274

    CAS  PubMed  Google Scholar 

  • Cartaud A, Jasmin BJ, Changeux JP, Cartaud J (1995) Direct involvement of a lamin-B-related (54 kDa) protein in the association of intermediate filaments with the postsynaptic membrane of the Torpedo marmorata electrocyte. J Cell Sci 108(Pt 1):153–160

    CAS  PubMed  Google Scholar 

  • Cetin N, Balci-Hayta B, Gundesli H, Korkusuz P, Purali N, Talim B, Tan E, Selcen D, Erdem-Ozdamar S, Dincer P (2013) A novel desmin mutation leading to autosomal recessive limb-girdle muscular dystrophy: distinct histopathological outcomes compared with desminopathies. J Med Genet 50(7):437–443. doi:10.1136/jmedgenet-2012-101487

    CAS  PubMed  Google Scholar 

  • Chourbagi O, Bruston F, Carinci M, Xue Z, Vicart P, Paulin D, Agbulut O (2011) Desmin mutations in the terminal consensus motif prevent synemin-desmin heteropolymer filament assembly. Exp Cell Res 317(6):886–897. doi:10.1016/j.yexcr.2011.01.013

    CAS  PubMed  Google Scholar 

  • Clemen CS, Herrmann H, Strelkov SV, Schroder R (2013) Desminopathies: pathology and mechanisms. Acta Neuropathol 125(1):47–75. doi:10.1007/s00401-012-1057-6

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cohen S, Zhai B, Gygi SP, Goldberg AL (2012) Ubiquitylation by Trim32 causes coupled loss of desmin, Z-bands, and thin filaments in muscle atrophy. J Cell Biol 198(4):575–589. doi:10.1083/jcb.201110067

    CAS  PubMed  Google Scholar 

  • Coletti D, Moresi V, Adamo S, Molinaro M, Sassoon D (2005) Tumor necrosis factor-alpha gene transfer induces cachexia and inhibits muscle regeneration. Genesis 43(3):120–128. doi:10.1002/gene.20160

    CAS  PubMed  Google Scholar 

  • Cooke P (1976) A filamentous cytoskeleton in vertebrate smooth muscle fibers. J Cell Biol 68(3):539–556

    CAS  PubMed  Google Scholar 

  • Costa ML, Escaleira R, Cataldo A, Oliveira F, Mermelstein CS (2004) Desmin: molecular interactions and putative functions of the muscle intermediate filament protein. Braz J Med Biol Res 37(12):1819–1830

    CAS  PubMed  Google Scholar 

  • Diguet N, Mallat Y, Ladouce R, Clodic G, Prola A, Tritsch E, Blanc J, Larcher JC, Delcayre C, Samuel JL, Friguet B, Bolbach G, Li Z, Mericskay M (2011) Muscle creatine kinase deficiency triggers both actin depolymerization and desmin disorganization by advanced glycation end products in dilated cardiomyopathy. J Biol Chem 286(40):35007–35019. doi:10.1074/jbc.M111.252395

    CAS  PubMed  Google Scholar 

  • Drexler HC, Ruhs A, Konzer A, Mendler L, Bruckskotten M, Looso M, Gunther S, Boettger T, Kruger M, Braun T (2012) On marathons and Sprints: an integrated quantitative proteomics and transcriptomics analysis of differences between slow and fast muscle fibers. Mol Cell Proteomics MCP 11 (6):M111 010801. doi:10.1074/mcp.M111.010801

  • Epstein CJ, de Asua LJ, Rozengurt E (1975) The role of cyclic AMP in myogenesis. J Cell Physiol 86(1):83–90. doi:10.1002/jcp.1040860110

    CAS  PubMed  Google Scholar 

  • Eriksson JE, Dechat T, Grin B, Helfand B, Mendez M, Pallari HM, Goldman RD (2009) Introducing intermediate filaments: from discovery to disease. J Clin Invest 119(7):1763–1771. doi:10.1172/JCI38339

    CAS  PubMed Central  PubMed  Google Scholar 

  • Evans RM (1988) The intermediate-filament proteins vimentin and desmin are phosphorylated in specific domains. Eur J Cell Biol 46(1):152–160

    CAS  PubMed  Google Scholar 

  • Fardeau M, Godet-Guillain J, Tome FM, Collin H, Gaudeau S, Boffety C, Vernant P (1978) A new familial muscular disorder demonstrated by the intra-sarcoplasmic accumulation of a granulo-filamentous material which is dense on electron microscopy (author’s transl). Rev Neurol (Paris) 134(6–7):411–425

    CAS  Google Scholar 

  • Fardeau M, Vicart P, Caron A, Chateau D, Chevallay M, Collin H, Chapon F, Duboc D, Eymard B, Tome FM, Dupret JM, Paulin D, Guicheney P (2000) Familial myopathy with desmin storage seen as a granulo-filamentar, electron-dense material with mutation of the alphaB-cristallin gene. Rev Neurol (Paris) 156(5):497–504

    CAS  Google Scholar 

  • Foster DB, Shen LH, Kelly J, Thibault P, Van Eyk JE, Mak AS (2000) Phosphorylation of caldesmon by p21-activated kinase. Implications for the Ca(2+) sensitivity of smooth muscle contraction. J Biol Chem 275(3):1959–1965

    CAS  PubMed  Google Scholar 

  • Frosk P, Weiler T, Nylen E, Sudha T, Greenberg CR, Morgan K, Fujiwara TM, Wrogemann K (2002) Limb-girdle muscular dystrophy type 2H associated with mutation in TRIM32, a putative E3-ubiquitin-ligase gene. Am J Hum Genet 70(3):663–672. doi:10.1086/339083

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fukata Y, Amano M, Kaibuchi K (2001) Rho–Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells. Trends Pharmacol Sci 22(1):32–39

    CAS  PubMed  Google Scholar 

  • Furst DO, Osborn M, Weber K (1989) Myogenesis in the mouse embryo: differential onset of expression of myogenic proteins and the involvement of titin in myofibril assembly. J Cell Biol 109(2):517–527

    CAS  PubMed  Google Scholar 

  • Gannon J, Staunton L, O’Connell K, Doran P, Ohlendieck K (2008) Phosphoproteomic analysis of aged skeletal muscle. Int J Mol Med 22(1):33–42

    CAS  PubMed  Google Scholar 

  • Gard DL, Lazarides E (1982) Analysis of desmin and vimentin phosphopeptides in cultured avian myogenic cells and their modulation by 8-bromo-adenosine 3′,5′-cyclic monophosphate. Proc Natl Acad Sci USA 79(22):6912–6916

    CAS  PubMed  Google Scholar 

  • Geisler N, Weber K (1988) Phosphorylation of desmin in vitro inhibits formation of intermediate filaments; identification of three kinase A sites in the aminoterminal head domain. EMBO J 7(1):15–20

    CAS  PubMed  Google Scholar 

  • Geisler N, Kaufmann E, Weber K (1982) Proteinchemical characterization of three structurally distinct domains along the protofilament unit of desmin 10 nm filaments. Cell 30(1):277–286

    CAS  PubMed  Google Scholar 

  • Geisler N, Schunemann J, Weber K (1992) Chemical cross-linking indicates a staggered and antiparallel protofilament of desmin intermediate filaments and characterizes one higher-level complex between protofilaments. Eur J Biochem 206(3):841–852

    CAS  PubMed  Google Scholar 

  • Georgatos SD, Weber K, Geisler N, Blobel G (1987) Binding of two desmin derivatives to the plasma membrane and the nuclear envelope of avian erythrocytes: evidence for a conserved site-specificity in intermediate filament-membrane interactions. Proc Natl Acad Sci USA 84(19):6780–6784

    CAS  PubMed  Google Scholar 

  • Getsios S, Huen AC, Green KJ (2004) Working out the strength and flexibility of desmosomes. Nat Rev Mol Cell Biol 5(4):271–281. doi:10.1038/nrm1356

    CAS  PubMed  Google Scholar 

  • Goldfarb LG, Dalakas MC (2009) Tragedy in a heartbeat: malfunctioning desmin causes skeletal and cardiac muscle disease. J Clin Invest 119(7):1806–1813. doi:10.1172/JCI38027

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goldie KN, Wedig T, Mitra AK, Aebi U, Herrmann H, Hoenger A (2007) Dissecting the 3-D structure of vimentin intermediate filaments by cryo-electron tomography. J Struct Biol 158(3):378–385. doi:10.1016/j.jsb.2006.12.007

    CAS  PubMed  Google Scholar 

  • Goto H, Tanabe K, Manser E, Lim L, Yasui Y, Inagaki M (2002) Phosphorylation and reorganization of vimentin by p21-activated kinase (PAK). Genes Cells 7(2):91–97

    CAS  PubMed  Google Scholar 

  • Graves DJ, Huiatt TW, Zhou H, Huang HY, Sernett SW, Robson RM, McMahon KK (1997) Regulatory role of arginine-specific mono(ADP-ribosyl)transferase in muscle cells. Adv Exp Med Biol 419:305–313

    CAS  PubMed  Google Scholar 

  • Hahn HS, Yussman MG, Toyokawa T, Marreez Y, Barrett TJ, Hilty KC, Osinska H, Robbins J, Dorn GW 2nd (2002) Ischemic protection and myofibrillar cardiomyopathy: dose-dependent effects of in vivo deltaPKC inhibition. Circ Res 91(8):741–748

    CAS  PubMed  Google Scholar 

  • Hein S, Scheffold T, Schaper J (1995) Ischemia induces early changes to cytoskeletal and contractile proteins in diseased human myocardium. J Thorac Cardiovasc Surg 110(1):89–98

    CAS  PubMed  Google Scholar 

  • Hengel SM, Goodlett DR (2012) A Review of Tandem Mass Spectrometry Characterization of Adenosine Diphosphate-Ribosylated Peptides. Int J Mass Spectrom 312:114–121. doi:10.1016/j.ijms.2011.06.003

    CAS  PubMed Central  PubMed  Google Scholar 

  • Herrmann H, Aebi U (2000) Intermediate filaments and their associates: multi-talented structural elements specifying cytoarchitecture and cytodynamics. Curr Opin Cell Biol 12(1):79–90

    CAS  PubMed  Google Scholar 

  • Herrmann H, Haner M, Brettel M, Ku NO, Aebi U (1999) Characterization of distinct early assembly units of different intermediate filament proteins. J Mol Biol 286(5):1403–1420. doi:10.1006/jmbi 1999.2528

    CAS  PubMed  Google Scholar 

  • Huang HY, Graves DJ, Robson RM, Huiatt TW (1993) ADP-ribosylation of the intermediate filament protein desmin and inhibition of desmin assembly in vitro by muscle ADP-ribosyltransferase. Biochem Biophys Res Commun 197(2):570–577. doi:10.1006/bbrc.1993.2517

    CAS  PubMed  Google Scholar 

  • Huang HY, Zhou H, Huiatt TW, Graves DJ (1996) Target proteins for arginine-specific mono(ADP-ribosyl) transferase in membrane fractions from chick skeletal muscle cells. Exp Cell Res 226(1):147–153. doi:10.1006/excr.1996.0213

    CAS  PubMed  Google Scholar 

  • Huang X, Li J, Foster D, Lemanski SL, Dube DK, Zhang C, Lemanski LF (2002) Protein kinase C-mediated desmin phosphorylation is related to myofibril disarray in cardiomyopathic hamster heart. Exp Biol Med (Maywood) 227(11):1039–1046

    CAS  Google Scholar 

  • Hutchison CJ (2002) Lamins: building blocks or regulators of gene expression? Nat Rev Mol Cell Biol 3(11):848–858. doi:10.1038/nrm950

    CAS  PubMed  Google Scholar 

  • Inada H, Goto H, Tanabe K, Nishi Y, Kaibuchi K, Inagaki M (1998) Rho-associated kinase phosphorylates desmin, the myogenic intermediate filament protein, at unique amino-terminal sites. Biochem Biophys Res Commun 253(1):21–25. doi:10.1006/bbrc.1998.9732

    CAS  PubMed  Google Scholar 

  • Inada H, Togashi H, Nakamura Y, Kaibuchi K, Nagata K, Inagaki M (1999) Balance between activities of Rho kinase and type 1 protein phosphatase modulates turnover of phosphorylation and dynamics of desmin/vimentin filaments. J Biol Chem 274(49):34932–34939

    CAS  PubMed  Google Scholar 

  • Inagaki M, Gonda Y, Matsuyama M, Nishizawa K, Nishi Y, Sato C (1988) Intermediate filament reconstitution in vitro. The role of phosphorylation on the assembly-disassembly of desmin. J Biol Chem 263(12):5970–5978

    CAS  PubMed  Google Scholar 

  • Inagaki M, Gonda Y, Ando S, Kitamura S, Nishi Y, Sato C (1989a) Regulation of assembly-disassembly of intermediate filaments in vitro. Cell Struct Funct 14(3):279–286

    CAS  PubMed  Google Scholar 

  • Inagaki M, Takahara H, Nishi Y, Sugawara K, Sato C (1989b) Ca2+-dependent deimination-induced disassembly of intermediate filaments involves specific modification of the amino-terminal head domain. J Biol Chem 264(30):18119–18127

    CAS  PubMed  Google Scholar 

  • Janue A, Odena MA, Oliveira E, Olive M, Ferrer I (2007a) Desmin is oxidized and nitrated in affected muscles in myotilinopathies and desminopathies. J Neuropathol Exp Neurol 66(8):711–723. doi:10.1097/nen.0b013e3181256b4c

    CAS  PubMed  Google Scholar 

  • Janue A, Olive M, Ferrer I (2007b) Oxidative stress in desminopathies and myotilinopathies: a link between oxidative damage and abnormal protein aggregation. Brain Pathol 17(4):377–388. doi:10.1111/j.1750-3639.2007.00087.x

    CAS  PubMed  Google Scholar 

  • Joanne P, Chourbagi O, Agbulut O (2011) Desmin filaments and their disorganization associated with myofibrillar myopathies. Biol Aujourdhui 205(3):163–177. doi:10.1051/jbio/2011016

    CAS  PubMed  Google Scholar 

  • Kaufmann E, Weber K, Geisler N (1985) Intermediate filament forming ability of desmin derivatives lacking either the amino-terminal 67 or the carboxy-terminal 27 residues. J Mol Biol 185(4):733–742

    CAS  PubMed  Google Scholar 

  • Kawajiri A, Yasui Y, Goto H, Tatsuka M, Takahashi M, Nagata K, Inagaki M (2003) Functional significance of the specific sites phosphorylated in desmin at cleavage furrow: Aurora-B may phosphorylate and regulate type III intermediate filaments during cytokinesis coordinatedly with Rho-kinase. Mol Biol Cell 14(4):1489–1500. doi:10.1091/mbc.E02-09-0612

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kay L, Li Z, Mericskay M, Olivares J, Tranqui L, Fontaine E, Tiivel T, Sikk P, Kaambre T, Samuel JL, Rappaport L, Usson Y, Leverve X, Paulin D, Saks VA (1997) Study of regulation of mitochondrial respiration in vivo. An analysis of influence of ADP diffusion and possible role of cytoskeleton. Biochim Biophys Acta 1322(1):41–59

    CAS  PubMed  Google Scholar 

  • Ke Y, Wang L, Pyle WG, de Tombe PP, Solaro RJ (2004) Intracellular localization and functional effects of P21-activated kinase-1 (Pak1) in cardiac myocytes. Circ Res 94(2):194–200. doi:10.1161/01.RES.0000111522.02730.56

    CAS  PubMed  Google Scholar 

  • Kharadia SV, Huiatt TW, Huang HY, Peterson JE, Graves DJ (1992) Effect of an arginine-specific ADP-ribosyltransferase inhibitor on differentiation of embryonic chick skeletal muscle cells in culture. Exp Cell Res 201(1):33–42

    CAS  PubMed  Google Scholar 

  • Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, Yamamori B, Feng J, Nakano T, Okawa K, Iwamatsu A, Kaibuchi K (1996) Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273(5272):245–248

    CAS  PubMed  Google Scholar 

  • Kirmse R, Bouchet-Marquis C, Page C, Hoenger A (2010) Three-dimensional cryo-electron microscopy on intermediate filaments. Methods Cell Biol 96:565–589. doi:10.1016/S0091-679X(10)96023-8

    PubMed  Google Scholar 

  • Kiss B, Rohlich P, Kellermayer MS (2011) Structure and elasticity of desmin protofibrils explored with scanning force microscopy. J Mol Recognit 24(6):1095–1104. doi:10.1002/jmr.1158

    PubMed  Google Scholar 

  • Kitamura S, Ando S, Shibata M, Tanabe K, Sato C, Inagaki M (1989) Protein kinase C phosphorylation of desmin at four serine residues within the non-alpha-helical head domain. J Biol Chem 264(10):5674–5678

    CAS  PubMed  Google Scholar 

  • Konieczny P, Fuchs P, Reipert S, Kunz WS, Zeold A, Fischer I, Paulin D, Schroder R, Wiche G (2008) Myofiber integrity depends on desmin network targeting to Z-disks and costameres via distinct plectin isoforms. J Cell Biol 181(4):667–681

    CAS  PubMed  Google Scholar 

  • Kosako H, Goto H, Yanagida M, Matsuzawa K, Fujita M, Tomono Y, Okigaki T, Odai H, Kaibuchi K, Inagaki M (1999) Specific accumulation of Rho-associated kinase at the cleavage furrow during cytokinesis: cleavage furrow-specific phosphorylation of intermediate filaments. Oncogene 18(17):2783–2788. doi:10.1038/sj.onc.1202633

    CAS  PubMed  Google Scholar 

  • Kouloumenta A, Mavroidis M, Capetanaki Y (2007) Proper perinuclear localization of the TRIM-like protein myospryn requires its binding partner desmin. J Biol Chem 282(48):35211–35221. doi:10.1074/jbc.M704733200

    CAS  PubMed  Google Scholar 

  • Kudryashova E, Wu J, Havton LA, Spencer MJ (2009) Deficiency of the E3 ubiquitin ligase TRIM32 in mice leads to a myopathy with a neurogenic component. Hum Mol Genet 18(7):1353–1367. doi:10.1093/hmg/ddp036

    CAS  PubMed  Google Scholar 

  • Kudryashova E, Struyk A, Mokhonova E, Cannon SC, Spencer MJ (2011) The common missense mutation D489 N in TRIM32 causing limb girdle muscular dystrophy 2H leads to loss of the mutated protein in knock-in mice resulting in a Trim32-null phenotype. Hum Mol Genet 20(20):3925–3932. doi:10.1093/hmg/ddr311

    CAS  PubMed  Google Scholar 

  • Kureishi Y, Kobayashi S, Amano M, Kimura K, Kanaide H, Nakano T, Kaibuchi K, Ito M (1997) Rho-associated kinase directly induces smooth muscle contraction through myosin light chain phosphorylation. J Biol Chem 272(19):12257–12260

    CAS  PubMed  Google Scholar 

  • Kusubata M, Tokui T, Matsuoka Y, Okumura E, Tachibana K, Hisanaga S, Kishimoto T, Yasuda H, Kamijo M, Ohba Y et al (1992) p13suc1 suppresses the catalytic function of p34cdc2 kinase for intermediate filament proteins, in vitro. J Biol Chem 267(29):20937–20942

    CAS  PubMed  Google Scholar 

  • Kusubata M, Matsuoka Y, Tsujimura K, Ito H, Ando S, Kamijo M, Yasuda H, Ohba Y, Okumura E, Kishimoto T et al (1993) cdc2 kinase phosphorylation of desmin at three serine/threonine residues in the amino-terminal head domain. Biochem Biophys Res Commun 190(3):927–934

    CAS  PubMed  Google Scholar 

  • Langley RC Jr, Cohen CM (1986) Association of spectrin with desmin intermediate filaments. J Cell Biochem 30(2):101–109

    CAS  PubMed  Google Scholar 

  • Lapouge K, Fontao L, Champliaud MF, Jaunin F, Frias MA, Favre B, Paulin D, Green KJ, Borradori L (2006) New insights into the molecular basis of desmoplakin- and desmin-related cardiomyopathies. J Cell Sci 119(Pt 23):4974–4985. doi:10.1242/jcs.03255

    CAS  PubMed  Google Scholar 

  • Lazarides E, Hubbard BD (1976) Immunological characterization of the subunit of the 100 A filaments from muscle cells. Proc Natl Acad Sci USA 73(12):4344–4348

    CAS  PubMed  Google Scholar 

  • Li H, Capetanaki Y (1993) Regulation of the mouse desmin gene: transactivated by MyoD, myogenin, MRF4 and Myf5. Nucleic Acids Res 21(2):335–343

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li H, Choudhary SK, Milner DJ, Munir MI, Kuisk IR, Capetanaki Y (1994) Inhibition of desmin expression blocks myoblast fusion and interferes with the myogenic regulators MyoD and myogenin. J Cell Biol 124(5):827–841

    CAS  PubMed  Google Scholar 

  • Li S, Iakoucheva LM, Mooney SD, Radivojac P (2010) Loss of post-translational modification sites in disease. Pac Symp Biocomput 337–347

  • Linden M, Li Z, Paulin D, Gotow T, Leterrier JF (2001) Effects of desmin gene knockout on mice heart mitochondria. J Bioenerg Biomembr 33(4):333–341

    CAS  PubMed  Google Scholar 

  • Luck S, Sailer M, Schmidt V, Walther P (2010) Three-dimensional analysis of intermediate filament networks using SEM tomography. J Microsc 239(1):1–16. doi:10.1111/j.1365-2818.2009.03348.x

    CAS  PubMed  Google Scholar 

  • Mabuchi K, Li B, Ip W, Tao T (1997) Association of calponin with desmin intermediate filaments. J Biol Chem 272(36):22662–22666

    CAS  PubMed  Google Scholar 

  • Marchal S, Cassar-Malek I, Magaud JP, Rouault JP, Wrutniak C, Cabello G (1995) Stimulation of avian myoblast differentiation by triiodothyronine: possible involvement of the cAMP pathway. Exp Cell Res 220(1):1–10. doi:10.1006/excr.1995.1285

    CAS  PubMed  Google Scholar 

  • McCullagh KJ, Edwards B, Poon E, Lovering RM, Paulin D, Davies KE (2007) Intermediate filament-like protein syncoilin in normal and myopathic striated muscle. Neuromuscul Disord 17(11–12):970–979

    PubMed  Google Scholar 

  • McFawn PK, Shen L, Vincent SG, Mak A, Van Eyk JE, Fisher JT (2003) Calcium-independent contraction and sensitization of airway smooth muscle by p21-activated protein kinase. Am J Physiol Lung Cell Mol Physiol 284(5):L863–L870. doi:10.1152/ajplung.0.0068.2002

    CAS  PubMed  Google Scholar 

  • McLendon PM, Robbins J (2011) Desmin-related cardiomyopathy: an unfolding story. Am J Physiol Heart Circ Physiol 301(4):H1220–H1228. doi:10.1152/ajpheart.00601.2011

    CAS  PubMed  Google Scholar 

  • Mittal B, Sanger JM, Sanger JW (1989) Visualization of intermediate filaments in living cells using fluorescently labeled desmin. Cell Motil Cytoskeleton 12(3):127–138. doi:10.1002/cm.970120302

    CAS  PubMed  Google Scholar 

  • Moresi V, Garcia-Alvarez G, Pristera A, Rizzuto E, Albertini MC, Rocchi M, Marazzi G, Sassoon D, Adamo S, Coletti D (2009) Modulation of caspase activity regulates skeletal muscle regeneration and function in response to vasopressin and tumor necrosis factor. PLoS ONE 4(5):e5570. doi:10.1371/journal.pone.0005570

    PubMed Central  PubMed  Google Scholar 

  • Mukai A, Hashimoto N (2008) Localized cyclic AMP-dependent protein kinase activity is required for myogenic cell fusion. Exp Cell Res 314(2):387–397. doi:10.1016/j.yexcr.2007.10.006

    CAS  PubMed  Google Scholar 

  • Mukherjee S, Trice J, Shinde P, Willis RE, Pressley TA, Perez-Zoghbi JF (2013) Ca2+ oscillations, Ca2+ sensitization, and contraction activated by protein kinase C in small airway smooth muscle. J Gen Physiol 141(2):165–178. doi:10.1085/jgp.201210876

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakano S, Engel AG, Akiguchi I, Kimura J (1997) Myofibrillar myopathy. III. Abnormal expression of cyclin-dependent kinases and nuclear proteins. J Neuropathol Exp Neurol 56(8):850–856

    CAS  PubMed  Google Scholar 

  • O’Connor CM, Gard DL, Lazarides E (1981) Phosphorylation of intermediate filament proteins by cAMP-dependent protein kinases. Cell 23(1):135–143

    PubMed  Google Scholar 

  • Ohtakara K, Inada H, Goto H, Taki W, Manser E, Lim L, Izawa I, Inagaki M (2000) p21-activated kinase PAK phosphorylates desmin at sites different from those for Rho-associated kinase. Biochem Biophys Res Commun 272(3):712–716. doi:10.1006/bbrc.2000.2854

    CAS  PubMed  Google Scholar 

  • Park S, Rasmussen H (1986) Carbachol-induced protein phosphorylation changes in bovine tracheal smooth muscle. J Biol Chem 261(33):15734–15739

    CAS  PubMed  Google Scholar 

  • Paulin D, Li Z (2004) Desmin: a major intermediate filament protein essential for the structural integrity and function of muscle. Exp Cell Res 301(1):1–7. doi:10.1016/j.yexcr.2004.08.004

    CAS  PubMed  Google Scholar 

  • Paulin D, Huet A, Khanamyrian L, Xue Z (2004) Desminopathies in muscle disease. J Pathol 204(4):418–427. doi:10.1002/path.1639

    CAS  PubMed  Google Scholar 

  • Peng Y, Yu D, Gregorich Z, Chen X, Beyer AM, Gutterman DD, Ge Y (2013) In-depth proteomic analysis of human tropomyosin by top-down mass spectrometry. J Muscle Res Cell Motil. doi:10.1007/s10974-013-9352-y

    PubMed  Google Scholar 

  • Pica EC, Kathirvel P, Pramono ZA, Lai PS, Yee WC (2008) Characterization of a novel S13F desmin mutation associated with desmin myopathy and heart block in a Chinese family. Neuromuscul Disord 18(2):178–182. doi:10.1016/j.nmd.2007.09.011

    PubMed  Google Scholar 

  • Quinlan RA, Hatzfeld M, Franke WW, Lustig A, Schulthess T, Engel J (1986) Characterization of dimer subunits of intermediate filament proteins. J Mol Biol 192(2):337–349

    CAS  PubMed  Google Scholar 

  • Rappaport L, Contard F, Samuel JL, Delcayre C, Marotte F, Tome F, Fardeau M (1988) Storage of phosphorylated desmin in a familial myopathy. FEBS Lett 231(2):421–425

    CAS  PubMed  Google Scholar 

  • Rasmussen H, Takuwa Y, Park S (1987) Protein kinase C in the regulation of smooth muscle contraction. FASEB J 1(3):177–185

    CAS  PubMed  Google Scholar 

  • Russell MA, Lund LM, Haber R, McKeegan K, Cianciola N, Bond M (2006) The intermediate filament protein, synemin, is an AKAP in the heart. Arch Biochem Biophys 456(2):204–215. doi:10.1016/j.abb.2006.06.010

    CAS  PubMed  Google Scholar 

  • Saccone V, Palmieri M, Passamano L, Piluso G, Meroni G, Politano L, Nigro V (2008) Mutations that impair interaction properties of TRIM32 associated with limb-girdle muscular dystrophy 2H. Hum Mutat 29(2):240–247. doi:10.1002/humu.20633

    CAS  PubMed  Google Scholar 

  • Schoser BG, Frosk P, Engel AG, Klutzny U, Lochmuller H, Wrogemann K (2005) Commonality of TRIM32 mutation in causing sarcotubular myopathy and LGMD2H. Ann Neurol 57(4):591–595. doi:10.1002/ana.20441

    CAS  PubMed  Google Scholar 

  • Schweitzer SC, Klymkowsky MW, Bellin RM, Robson RM, Capetanaki Y, Evans RM (2001) Paranemin and the organization of desmin filament networks. J Cell Sci 114(Pt 6):1079–1089

    CAS  PubMed  Google Scholar 

  • Selcen D, Engel AG (2011) Myofibrillar myopathies. Handb Clin Neurol 101:143–154. doi:10.1016/B978-0-08-045031-5.00011-6

    PubMed  Google Scholar 

  • Sharma S, Mucke N, Katus HA, Herrmann H, Bar H (2009) Disease mutations in the “head” domain of the extra-sarcomeric protein desmin distinctly alter its assembly and network-forming properties. J Mol Med (Berl) 87(12):1207–1219. doi:10.1007/s00109-009-0521-9

    CAS  Google Scholar 

  • Shieh PB, Kudryashova E, Spencer MJ (2011) Limb-girdle muscular dystrophy 2H and the role of TRIM32. Handb Clin Neurolgy 101:125–133. doi:10.1016/B978-0-08-045031-5.00009-8

    Google Scholar 

  • Singh MV, Anderson ME (2011) Is CaMKII a link between inflammation and hypertrophy in heart? J Mol Med (Berl) 89(6):537–543. doi:10.1007/s00109-011-0727-5

    CAS  Google Scholar 

  • Sjoberg G, Jiang WQ, Ringertz NR, Lendahl U, Sejersen T (1994) Colocalization of nestin and vimentin/desmin in skeletal muscle cells demonstrated by three-dimensional fluorescence digital imaging microscopy. Exp Cell Res 214(2):447–458

    CAS  PubMed  Google Scholar 

  • Small JV, Gimona M (1998) The cytoskeleton of the vertebrate smooth muscle cell. Acta Physiol Scand 164(4):341–348. doi:10.1046/j.1365-201X.1998.00441.x

    CAS  PubMed  Google Scholar 

  • Small JV, Sobieszek A (1977) Studies on the function and composition of the 10-NM(100-A) filaments of vertebrate smooth muscle. J Cell Sci 23:243–268

    CAS  PubMed  Google Scholar 

  • Swaminathan PD, Purohit A, Hund TJ, Anderson ME (2012) Calmodulin-dependent protein kinase II: linking heart failure and arrhythmias. Circ Res 110(12):1661–1677. doi:10.1161/CIRCRESAHA.111.243956

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takuwa Y, Kelley G, Takuwa N, Rasmussen H (1988) Protein phosphorylation changes in bovine carotid artery smooth muscle during contraction and relaxation. Mol Cell Endocrinol 60(1):71–86

    CAS  PubMed  Google Scholar 

  • Tao JX, Ip W (1991) Site-specific antibodies block kinase A phosphorylation of desmin in vitro and inhibit incorporation of myoblasts into myotubes. Cell Motil Cytoskeleton 19(2):109–120. doi:10.1002/cm.970190206

    CAS  PubMed  Google Scholar 

  • Terman JR, Kashina A (2013) Post-translational modification and regulation of actin. Curr Opin Cell Biol 25(1):30–38. doi:10.1016/j.ceb.2012.10.009

    CAS  PubMed  Google Scholar 

  • Thornell LE, Eriksson A (1981) Filament systems in the Purkinje fibers of the heart. Am J Physiol 241(3):H291–H305

    CAS  PubMed  Google Scholar 

  • Titeux M, Brocheriou V, Xue Z, Gao J, Pellissier JF, Guicheney P, Paulin D, Li Z (2001) Human synemin gene generates splice variants encoding two distinct intermediate filament proteins. Eur J Biochem 268(24):6435–6449

    CAS  PubMed  Google Scholar 

  • Tokui T, Yamauchi T, Yano T, Nishi Y, Kusagawa M, Yatani R, Inagaki M (1990) Ca2+-calmodulin-dependent protein kinase II phosphorylates various types of non-epithelial intermediate filament proteins. Biochem Biophys Res Commun 169(3):896–904

    CAS  PubMed  Google Scholar 

  • Tolstonog GV, Sabasch M, Traub P (2002) Cytoplasmic intermediate filaments are stably associated with nuclear matrices and potentially modulate their DNA-binding function. DNA Cell Biol 21(3):213–239. doi:10.1089/10445490252925459

    CAS  PubMed  Google Scholar 

  • Toschi A, Severi A, Coletti D, Catizone A, Musaro A, Molinaro M, Nervi C, Adamo S, Scicchitano BM (2011) Skeletal muscle regeneration in mice is stimulated by local overexpression of V1a-vasopressin receptor. Mol Endocrinol 25(9):1661–1673. doi:10.1210/me.2011-1049

    CAS  PubMed  Google Scholar 

  • Traub P, Vorgias CE (1984) Differential effect of arginine modification with 1,2-cyclohexanedione on the capacity of vimentin and desmin to assemble into intermediate filaments and to bind to nucleic acids. J Cell Sci 65:1–20

    CAS  PubMed  Google Scholar 

  • Van Eyk JE, Arrell DK, Foster DB, Strauss JD, Heinonen TY, Furmaniak-Kazmierczak E, Cote GP, Mak AS (1998) Different molecular mechanisms for Rho family GTPase-dependent, Ca2+-independent contraction of smooth muscle. J Biol Chem 273(36):23433–23439

    PubMed  Google Scholar 

  • Vattemi G, Tonin P, Mora M, Filosto M, Morandi L, Savio C, Dal Pra I, Rizzuto N, Tomelleri G (2004) Expression of protein kinase C isoforms and interleukin-1beta in myofibrillar myopathy. Neurology 62(10):1778–1782

    CAS  PubMed  Google Scholar 

  • Vicart P, Caron A, Guicheney P, Li Z, Prevost MC, Faure A, Chateau D, Chapon F, Tome F, Dupret JM, Paulin D, Fardeau M (1998) A missense mutation in the alphaB-crystallin chaperone gene causes a desmin-related myopathy. Nat Genet 20(1):92–95

    CAS  PubMed  Google Scholar 

  • Wang Q, Tolstonog GV, Shoeman R, Traub P (2001) Sites of nucleic acid binding in type I-IV intermediate filament subunit proteins. Biochemistry 40(34):10342–10349

    CAS  PubMed  Google Scholar 

  • Winter B, Braun T, Arnold HH (1993) cAMP-dependent protein kinase represses myogenic differentiation and the activity of the muscle-specific helix-loop-helix transcription factors Myf-5 and MyoD. J Biol Chem 268(13):9869–9878

    CAS  PubMed  Google Scholar 

  • Xue ZG, Cheraud Y, Brocheriou V, Izmiryan A, Titeux M, Paulin D, Li Z (2004) The mouse synemin gene encodes three intermediate filament proteins generated by alternative exon usage and different open reading frames. Exp Cell Res 298(2):431–444. doi:10.1016/j.yexcr.2004.04.023

    CAS  PubMed  Google Scholar 

  • Yau L, Litchie B, Thomas S, Storie B, Yurkova N, Zahradka P (2003) Endogenous mono-ADP-ribosylation mediates smooth muscle cell proliferation and migration via protein kinase N-dependent induction of c-fos expression. Eur J Biochem 270(1):101–110

    CAS  PubMed  Google Scholar 

  • Yau L, Litchie B, Zahradka P (2004) MIBG, an inhibitor of arginine-dependent mono(ADP-ribosyl)ation, prevents differentiation of L6 skeletal myoblasts by inhibiting expression of myogenin and p21(cip1). Exp Cell Res 301(2):320–330. doi:10.1016/j.yexcr.2004.08.036

    CAS  PubMed  Google Scholar 

  • Yu JG, Thornell LE (2002) Desmin and actin alterations in human muscles affected by delayed onset muscle soreness: a high resolution immunocytochemical study. Histochem Cell Biol 118(2):171–179. doi:10.1007/s00418-002-0427-x

    CAS  PubMed  Google Scholar 

  • Yu JG, Furst DO, Thornell LE (2003) The mode of myofibril remodelling in human skeletal muscle affected by DOMS induced by eccentric contractions. Histochem Cell Biol 119(5):383–393. doi:10.1007/s00418-003-0522-7

    CAS  PubMed  Google Scholar 

  • Yu JG, Carlsson L, Thornell LE (2004) Evidence for myofibril remodeling as opposed to myofibril damage in human muscles with DOMS: an ultrastructural and immunoelectron microscopic study. Histochem Cell Biol 121(3):219–227. doi:10.1007/s00418-004-0625-9

    CAS  PubMed  Google Scholar 

  • Yuan J, Huiatt TW, Liao CX, Robson RM, Graves DJ (1999) The effects of mono-ADP-ribosylation on desmin assembly-disassembly. Arch Biochem Biophys 363(2):314–322

    CAS  PubMed  Google Scholar 

  • Zalin RJ, Montague W (1974) Changes in adenylate cyclase, cyclic AMP, and protein kinase levels in chick myoblasts, and their relationship to differentiation. Cell 2(2):103–108

    CAS  PubMed  Google Scholar 

  • Zhou H, Huiatt TW, Robson RM, Sernett SW, Graves DJ (1996) Characterization of ADP-ribosylation sites on desmin and restoration of desmin intermediate filament assembly by de-ADP-ribosylation. Arch Biochem Biophys 334(2):214–222. doi:10.1006/abbi.1996.0449

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Baraibar MA, Dr. Parlakian A, Dr. Pinet F, Pr. Agbulut O and Pr. Foulon T for fruitful discussions. The work was supported by the Association Française contre les Myopathies (AFM) and the Université Pierre et Marie Curie Paris 6 (UPMC). The authors are grateful to colleagues for their contribution in the field and apologize to those works that we were unable to cite owing to lack of space.

Conflict of interest

No conflicts of interest, financial or otherwise, are declared by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenlin Li.

Additional information

Daniel L. Winter, Denise Paulin, Mathias Mericskay and Zhenlin Li have equally contributed to the final manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winter, D.L., Paulin, D., Mericskay, M. et al. Posttranslational modifications of desmin and their implication in biological processes and pathologies. Histochem Cell Biol 141, 1–16 (2014). https://doi.org/10.1007/s00418-013-1148-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-013-1148-z

Keywords

Navigation