Skip to main content
Log in

Plant TGNs: dynamics and physiological functions

  • Review
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

In all eukaryotic cells, a membrane trafficking system connects the post-Golgi organelles, including the trans-Golgi network (TGN), endosomes, and vacuoles. This complex network plays critical roles in several higher-order functions in multicellular organisms. The TGN, one of the important organelles for protein transport in the post-Golgi network, functions as a sorting station, where cargo proteins are directed to the appropriate post-Golgi compartments. The TGN has been considered to be a compartment belonging to the Golgi apparatus, located on the trans side of the Golgi apparatus. However, in plant cells, recent studies have suggested that the TGN is an independent, dynamic organelle that possesses features different than those of TGNs in animal and yeast cells. In this review, we summarize recent progress regarding the dynamics and physiological functions of the plant TGN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Asaoka R, Uemura T, Ito J, Fujimoto M, Ito E, Ueda T, Nakano A (2012) Arabidopsis RABA1 GTPases are involved in transport between the trans-Golgi network and the plasma membrane, and are required for salinity stress tolerance. Plant J. doi:10.1111/tpj.12023

    PubMed  Google Scholar 

  • Bassham DC, Sanderfoot AA, Kovaleva V, Zheng H, Raikhel NV (2000) AtVPS45 complex formation at the trans-Golgi network. Mol Biol Cell 11(7):2251–2265

    Article  PubMed  CAS  Google Scholar 

  • Brux A, Liu TY, Krebs M, Stierhof YD, Lohmann JU, Miersch O, Wasternack C, Schumacher K (2008) Reduced V-ATPase activity in the trans-Golgi network causes oxylipin-dependent hypocotyl growth inhibition in Arabidopsis. Plant Cell 20(4):1088–1100. doi:10.1105/tpc.108.058362

    Article  PubMed  Google Scholar 

  • Choi SW, Tamaki T, Ebine K, Uemura T, Ueda T, Nakano A (2013) RABA members act in distinct steps of subcellular trafficking of the FLAGELLIN SENSING2 receptor. Plant Cell 25(3):1174–1187. doi:10.1105/tpc.112.108803

    Article  PubMed  CAS  Google Scholar 

  • Clermont Y, Rambourg A, Hermo L (1995) Trans-Golgi network (TGN) of different cell types: three-dimensional structural characteristics and variability. Anat Rec 242(3):289–301. doi:10.1002/ar.1092420302

    Article  PubMed  CAS  Google Scholar 

  • Dettmer J, Hong-Hermesdorf A, Stierhof YD, Schumacher K (2006) Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in Arabidopsis. Plant Cell 18(3):715–730. doi:10.1105/tpc.105.037978

    Article  PubMed  CAS  Google Scholar 

  • Emr S, Glick BS, Linstedt AD, Lippincott-Schwartz J, Luini A, Malhotra V, Marsh BJ, Nakano A, Pfeffer SR, Rabouille C, Rothman JE, Warren G, Wieland FT (2009) Journeys through the Golgi—taking stock in a new era. J Cell Biol 187(4):449–453. doi:10.1083/jcb.200909011

    Article  PubMed  CAS  Google Scholar 

  • Gendre D, Oh J, Boutte Y, Best JG, Samuels L, Nilsson R, Uemura T, Marchant A, Bennett MJ, Grebe M, Bhalerao RP (2011) Conserved Arabidopsis ECHIDNA protein mediates trans-Golgi-network trafficking and cell elongation. Proc Natl Acad Sci USA 108(19):8048–8053. doi:10.1073/pnas.1018371108

    Article  PubMed  CAS  Google Scholar 

  • Glick BS, Nakano A (2009) Membrane traffic within the Golgi apparatus. Annu Rev Cell Dev Biol 25:113–132. doi:10.1146/annurev.cellbio.24.110707.175421

    Article  PubMed  CAS  Google Scholar 

  • Griffiths G, Simons K (1986) The trans Golgi network: sorting at the exit site of the Golgi complex. Science 234(4775):438–443

    Article  PubMed  CAS  Google Scholar 

  • Gu Y, Innes RW (2012) The KEEP ON GOING protein of Arabidopsis regulates intracellular protein trafficking and is degraded during fungal infection. Plant Cell 24(11):4717–4730. doi:10.1105/tpc.112.105254

    Article  PubMed  CAS  Google Scholar 

  • Ito Y, Uemura T, Shoda K, Fujimoto M, Ueda T, Nakano A (2012) cis-Golgi proteins accumulate near the ER exit sites and act as the scaffold for Golgi regeneration after brefeldin A treatment in tobacco BY-2 cells. Mol Biol Cell 23(16):3203–3214. doi:10.1091/mbc.E12-01-0034

    Article  PubMed  CAS  Google Scholar 

  • Jurgens G, Geldner N (2002) Protein secretion in plants: from the trans-Golgi network to the outer space. Traffic 3(9):605–613

    Article  PubMed  CAS  Google Scholar 

  • Kang BH, Nielsen E, Preuss ML, Mastronarde D, Staehelin LA (2011) Electron tomography of RabA4b- and PI-4Kbeta1-labeled trans Golgi network compartments in Arabidopsis. Traffic 12(3):313–329. doi:10.1111/j.1600-0854.2010.01146.x

    Article  PubMed  CAS  Google Scholar 

  • Keller P, Simons K (1997) Post-Golgi biosynthetic trafficking. J Cell Sci 110(Pt 24):3001–3009

    PubMed  CAS  Google Scholar 

  • Kim SJ, Bassham DC (2011) TNO1 is involved in salt tolerance and vacuolar trafficking in Arabidopsis. Plant Physiol 156(2):514–526. doi:10.1104/pp.110.168963

    Article  PubMed  CAS  Google Scholar 

  • Ladinsky MS, Kremer JR, Furcinitti PS, McIntosh JR, Howell KE (1994) HVEM tomography of the trans-Golgi network: structural insights and identification of a lace-like vesicle coat. J Cell Biol 127(1):29–38

    Article  PubMed  CAS  Google Scholar 

  • Pavelka M, Ellinger A, Debbage P, Loewe C, Vetterlein M, Roth J (1998) Endocytic routes to the Golgi apparatus. Histochem Cell Biol 109(5–6):555–570

    Article  PubMed  CAS  Google Scholar 

  • Pesacreta TC, Lucas WJ (1985) Presence of a partially-coated reticulum in angiosperms. Protoplasma 125(3):173–184. doi:10.1007/Bf01281235

    Article  Google Scholar 

  • Rabouille C, Hui N, Hunte F, Kieckbusch R, Berger EG, Warren G, Nilsson T (1995) Mapping the distribution of Golgi enzymes involved in the construction of complex oligosaccharides. J Cell Sci 108(Pt 4):1617–1627

    PubMed  CAS  Google Scholar 

  • Roth J, Taatjes DJ, Lucocq JM, Weinstein J, Paulson JC (1985) Demonstration of an extensive trans-tubular network continuous with the Golgi apparatus stack that may function in glycosylation. Cell 43(1):287–295

    Article  PubMed  CAS  Google Scholar 

  • Sanderfoot AA, Kovaleva V, Bassham DC, Raikhel NV (2001) Interactions between syntaxins identify at least five SNARE complexes within the Golgi/prevacuolar system of the Arabidopsis cell. Mol Biol Cell 12(12):3733–3743

    Article  PubMed  CAS  Google Scholar 

  • Sannerud R, Saraste J, Goud B (2003) Retrograde traffic in the biosynthetic-secretory route: pathways and machinery. Curr Opin Cell Biol 15(4):438–445

    Article  PubMed  CAS  Google Scholar 

  • Shewan AM, van Dam EM, Martin S, Luen TB, Hong W, Bryant NJ, James DE (2003) GLUT4 recycles via a trans-Golgi network (TGN) subdomain enriched in Syntaxins 6 and 16 but not TGN38: involvement of an acidic targeting motif. Mol Biol Cell 14(3):973–986. doi:10.1091/mbc.E02-06-0315

    Article  PubMed  CAS  Google Scholar 

  • Staehelin LA, Moore I (1995) The plant Golgi-apparatus: structure, functional-organization and trafficking mechanisms. Annu Rev Plant Phys 46:261–288. doi:10.1146/annurev.pp.46.060195.001401

    Article  CAS  Google Scholar 

  • Staehelin LA, Giddings TH, Kiss JZ, Sack FD (1990) Macromolecular differentiation of Golgi stacks in root-tips of Arabidopsis and Nicotiana seedlings as visualized in high-pressure frozen and freeze-substituted samples. Protoplasma 157(1–3):75–91. doi:10.1007/Bf01322640

    Article  PubMed  CAS  Google Scholar 

  • Taatjes DJ, Roth J (1986) The trans-tubular network of the hepatocyte Golgi apparatus is part of the secretory pathway. Eur J Cell Biol 42(2):344–350

    PubMed  CAS  Google Scholar 

  • Toyooka K, Goto Y, Asatsuma S, Koizumi M, Mitsui T, Matsuoka K (2009) A mobile secretory vesicle cluster involved in mass transport from the Golgi to the plant cell exterior. Plant Cell 21(4):1212–1229. doi:10.1105/tpc.108.058933

    Article  PubMed  CAS  Google Scholar 

  • Uemura T, Ueda T, Ohniwa RL, Nakano A, Takeyasu K, Sato MH (2004) Systematic analysis of SNARE molecules in Arabidopsis: dissection of the post-Golgi network in plant cells. Cell Struct Funct 29(2):49–65

    Article  PubMed  CAS  Google Scholar 

  • Uemura T, Kim H, Saito C, Ebine K, Ueda T, Schulze-Lefert P, Nakano A (2012a) Qa-SNAREs localized to the trans-Golgi network regulate multiple transport pathways and extracellular disease resistance in plants. Proc Natl Acad Sci USA 109(5):1784–1789. doi:10.1073/pnas.1115146109

    Article  PubMed  CAS  Google Scholar 

  • Uemura T, Ueda T, Nakano A (2012b) The physiological role of SYP4 in the salinity and osmotic stress tolerances. Plant Signal Behav 7(9):1118–1120. doi:10.4161/psb.21307

    Article  PubMed  CAS  Google Scholar 

  • Viotti C, Bubeck J, Stierhof YD, Krebs M, Langhans M, van den Berg W, van Dongen W, Richter S, Geldner N, Takano J, Jurgens G, de Vries SC, Robinson DG, Schumacher K (2010) Endocytic and secretory traffic in Arabidopsis merge in the trans-Golgi network/early endosome, an independent and highly dynamic organelle. Plant Cell 22(4):1344–1357. doi:10.1105/tpc.109.072637

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Gong Z, Zhang C, Song CP, Damsz B, Inan G, Koiwa H, Zhu JK, Hasegawa PM, Bressan RA (2002) OSM1/SYP61: a syntaxin protein in Arabidopsis controls abscisic acid-mediated and non-abscisic acid-mediated responses to abiotic stress. Plant Cell 14(12):3009–3028

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiro Uemura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uemura, T., Nakano, A. Plant TGNs: dynamics and physiological functions. Histochem Cell Biol 140, 341–345 (2013). https://doi.org/10.1007/s00418-013-1116-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-013-1116-7

Keywords

Navigation