Skip to main content

Advertisement

Log in

MARCH7 E3 ubiquitin ligase is highly expressed in developing spermatids of rats and its possible involvement in head and tail formation

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Spermatogenesis is a highly complicated metamorphosis process of male germ cells. Recent studies have provided evidence that the ubiquitin–proteasome system plays an important role in sperm head shaping, but the underlying mechanism is less understood. In this study, we localized membrane-associated RING-CH (MARCH)7, an E3 ubiquitin ligase, in rat testis. Northern blot analysis showed that March7 mRNA is expressed ubiquitously but highly in the testis and ovary. In situ hybridization of rat testis demonstrated that March7 mRNA is expressed weakly in spermatogonia and its level is gradually increased as they develop. Immunohistochemical analysis detected MARCH7 protein expression in spermiogenic cells from late round spermatids to elongated spermatids and in epididymal spermatozoa. Moreover, MARCH7 was found to be localized to the caudal end of the developing acrosome of late round and elongating spermatids, colocalizing with β-actin, a component of the acroplaxome. In addition, MARCH7 was also detected in the developing flagella and its expression levels were prominent in elongated spermatids. We also showed that MARCH7 catalyzes lysine 48 (K48)-linked ubiquitination. Immunolocalization studies revealed that K48-linked ubiquitin chains were detected in the heads of elongating spermatids and in the acrosome/acroplaxome, neck, midpiece and cytoplasmic lobes of elongated spermatids. These results suggest that MARCH7 is involved in spermiogenesis by regulating the structural and functional integrity of the head and tail of developing spermatids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aihara T, Nakamura N, Honda S, Hirose S (2009) A novel potential role for gametogenetin-binding protein 1 (GGNBP1) in mitochondrial morphogenesis during spermatogenesis in mice. Biol Reprod 80(4):762–770. doi:10.1095/biolreprod.108.074013

    Article  PubMed  CAS  Google Scholar 

  • Behnen M, Murk K, Kursula P, Cappallo-Obermann H, Rothkegel M, Kierszenbaum AL, Kirchhoff C (2009) Testis-expressed profilins 3 and 4 show distinct functional characteristics and localize in the acroplaxome-manchette complex in spermatids. BMC Cell Biol 10:34. doi:10.1186/1471-2121-10-34

    Article  PubMed  Google Scholar 

  • Clermont Y, Oko R, Hermo L (1993) Cell biology of mammalian spermatogenesis. In: Desjarjins C, Ewing LL (eds) Cell and molecular biology of the testis. Oxford University Press, New York, pp 332–376

    Google Scholar 

  • Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82(2):373–428. doi:10.1152/physrev.00027.2001

    PubMed  CAS  Google Scholar 

  • Haraguchi CM, Mabuchi T, Hirata S, Shoda T, Hoshi K, Yokota S (2004) Ubiquitin signals in the developing acrosome during spermatogenesis of rat testis: an immunoelectron microscopic study. J Histochem Cytochem 52(11):1393–1403. doi:10.1369/jhc.4A6275.2004

    Article  PubMed  CAS  Google Scholar 

  • Hermo L, Pelletier RM, Cyr DG, Smith CE (2010) Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 4: intercellular bridges, mitochondria, nuclear envelope, apoptosis, ubiquitination, membrane/voltage-gated channels, methylation/acetylation, and transcription factors. Microsc Res Tech 73(4):364–408. doi:10.1002/jemt.20785

    Article  PubMed  CAS  Google Scholar 

  • Ito C, Suzuki-Toyota F, Maekawa M, Toyama Y, Yao R, Noda T, Toshimori K (2004) Failure to assemble the peri-nuclear structures in GOPC deficient spermatids as found in round-headed spermatozoa. Arch Histol Cytol 67(4):349–360

    Article  PubMed  CAS  Google Scholar 

  • Iyengar PV, Hirota T, Hirose S, Nakamura N (2011) Membrane-associated RING-CH 10 (MARCH10 protein) is a microtubule-associated E3 ubiquitin ligase of the spermatid flagella. J Biol Chem 286(45):39082–39090. doi:10.1074/jbc.M111.256875

    Article  PubMed  CAS  Google Scholar 

  • Johnston JA, Ward CL, Kopito RR (1998) Aggresomes: a cellular response of misfolded proteins. J Cell Biol 143(7):1883–1898. doi:10.1083/jcb.143.7.1883

    Article  PubMed  CAS  Google Scholar 

  • Kang-Decker N, Mantchev GT, Juneja SC, McNiven MA, van Deursen JM (2001) Lack of acrosome formation in Hrb-deficient mice. Science 294(5546):1531–1533. doi:10.1126/science.1063665

    Article  PubMed  CAS  Google Scholar 

  • Kato A, Nagata Y, Todokoro K (2004) Delta-tubulin is a component of intercellular bridges and both the early and mature perinuclear rings during spermatogenesis. Dev Biol 269(1):196–205. doi:10.1016/j.ydbio.2004.01.026

    Article  PubMed  CAS  Google Scholar 

  • Kierszenbaum AL, Tres LL (2004) The acrosome-acroplaxome-manchette complex and the shaping of the spermatid head. Arch Histol Cytol 67(4):271–284

    Article  PubMed  CAS  Google Scholar 

  • Kierszenbaum AL, Rivkin E, Tres LL (2003a) Acroplaxome, an F-actin-keratin-containing plate, anchors the acrosome to the nucleus during shaping of the spermatid head. Mol Biol Cell 14(11):4628–4640. doi:10.1091/mbc.E03-04-0226

    Article  PubMed  CAS  Google Scholar 

  • Kierszenbaum AL, Rivkin E, Tres LL (2003b) The actin-based motor myosin Va is a component of the acroplaxome, an acrosome-nuclear envelope junctional plate, and of manchette-associated vesicles. Cytogenet Genome Res 103(3–4):337–344. doi:10.1159/000076822

    Article  PubMed  CAS  Google Scholar 

  • Kierszenbaum AL, Tres LL, Rivkin E, Kang-Decker N, van Deursen JM (2004) The acroplaxome is the docking site of Golgi-derived myosin Va/Rab27a/b containing proacrosomal vesicles in wild-type and Hrb mutant mouse spermatids. Biol Reprod 70(5):1400–1410. doi:10.1095/biolreprod.103.025346

    Article  PubMed  CAS  Google Scholar 

  • Kierszenbaum AL, Rivkin E, Tres LL (2008) Expression of Fer testis (FerT) tyrosine kinase transcript variants and distribution sites of FerT during the development of the acrosome-acroplaxome-manchette complex in rat spermatids. Dev Dyn 237(12):3882–3891. doi:10.1002/dvdy.21789

    Article  PubMed  CAS  Google Scholar 

  • Kierszenbaum AL, Rivkin E, Tres LL (2011a) Cytoskeletal track selection during cargo transport in spermatids is relevant to male fertility. Spermatogenesis 1(3):221–230. doi:10.4161/spmg.1.3.18018

    Article  PubMed  Google Scholar 

  • Kierszenbaum AL, Rivkin E, Tres LL, Yoder BK, Haycraft CJ, Bornens M, Rios RM (2011b) GMAP210 and IFT88 are present in the spermatid golgi apparatus and participate in the development of the acrosome-acroplaxome complex, head-tail coupling apparatus and tail. Dev Dyn 240(3):723–736. doi:10.1002/dvdy.22563

    Article  PubMed  CAS  Google Scholar 

  • Lerer-Goldshtein T, Bel S, Shpungin S, Pery E, Motro B, Goldstein RS, Bar-Sheshet SI, Breitbart H, Nir U (2010) TMF/ARA160: a key regulator of sperm development. Dev Biol 348(1):12–21. doi:10.1016/j.ydbio.2010.07.033

    Article  PubMed  CAS  Google Scholar 

  • Lim SK, Shin JM, Kim YS, Baek KH (2004) Identification and characterization of murine mHAUSP encoding a deubiquitinating enzyme that regulates the status of p53 ubiquitination. Int J Oncol 24(2):357–364

    PubMed  CAS  Google Scholar 

  • Lu LY, Wu J, Ye L, Gavrilina GB, Saunders TL, Yu X (2010) RNF8-dependent histone modifications regulate nucleosome removal during spermatogenesis. Dev Cell 18(3):371–384. doi:10.1016/j.devcel.2010.01.010

    Article  PubMed  CAS  Google Scholar 

  • Metcalfe SM, Muthukumarana PA, Thompson HL, Haendel MA, Lyons GE (2005) Leukaemia inhibitory factor (LIF) is functionally linked to axotrophin and both LIF and axotrophin are linked to regulatory immune tolerance. FEBS Lett 579(3):609–614. doi:10.1016/j.febslet.2004.12.027

    Article  PubMed  CAS  Google Scholar 

  • Morokuma Y, Nakamura N, Kato A, Notoya M, Yamamoto Y, Sakai Y, Fukuda H, Yamashina S, Hirata Y, Hirose S (2007) MARCH-XI, a novel transmembrane ubiquitin ligase implicated in ubiquitin-dependent protein sorting in developing spermatids. J Biol Chem 282(34):24806–24815. doi:10.1074/jbc.M700414200

    Article  PubMed  CAS  Google Scholar 

  • Muthukumarana PA, Lyons GE, Miura Y, Thompson LH, Watson T, Green CJ, Shurey S, Hess AD, Rosengard BR, Metcalfe SM (2006) Evidence for functional inter-relationships between FOXP3, leukaemia inhibitory factor, and axotrophin/MARCH-7 in transplantation tolerance. Int Immunopharmacol 6(13–14):1993–2001. doi:10.1016/j.intimp.2006.09.015

    Article  PubMed  CAS  Google Scholar 

  • Nakamura N (2011) The role of the transmembrane RING finger proteins in cellular and organelle function. Membranes 1(4):354–393. doi:10.3390/membranes1040354

    Article  CAS  Google Scholar 

  • Nathan JA, Sengupta S, Wood SA, Admon A, Markson G, Sanderson C, Lehner PJ (2008) The ubiquitin E3 ligase MARCH7 is differentially regulated by the deubiquitylating enzymes USP7 and USP9X. Traffic 9(7):1130–1145. doi:10.1111/j.1600-0854.2008.00747.x

    Article  PubMed  CAS  Google Scholar 

  • Perry E, Tsruya R, Levitsky P, Pomp O, Taller M, Weisberg S, Parris W, Kulkarni S, Malovani H, Pawson T, Shpungin S, Nir U (2004) TMF/ARA160 is a BC-box-containing protein that mediates the degradation of Stat3. Oncogene 23(55):8908–8919. doi:10.1038/sj.onc.1208149

    Article  PubMed  CAS  Google Scholar 

  • Rivkin E, Kierszenbaum AL, Gil M, Tres LL (2009) Rnf19a, a ubiquitin protein ligase, and Psmc3, a component of the 26S proteasome, tether to the acrosome membranes and the head-tail coupling apparatus during rat spermatid development. Dev Dyn 238(7):1851–1861. doi:10.1002/dvdy.22004

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez CI, Stewart CL (2007) Disruption of the ubiquitin ligase HERC4 causes defects in spermatozoon maturation and impaired fertility. Dev Biol 312(2):501–508. doi:10.1016/j.ydbio.2007.09.053

    Article  PubMed  CAS  Google Scholar 

  • Roest HP, van Klaveren J, de Wit J, van Gurp CG, Koken MH, Vermey M, van Roijen JH, Hoogerbrugge JW, Vreeburg JT, Baarends WM, Bootsma D, Grootegoed JA, Hoeijmakers JH (1996) Inactivation of the HR6B ubiquitin-conjugating DNA repair enzyme in mice causes male sterility associated with chromatin modification. Cell 86(5):799–810

    Article  PubMed  CAS  Google Scholar 

  • Russell LD, Ettlin RA, Sinha Hikim AP, Clegg ED (1990) Histological and histopathological evaluation of the testis. Cache River Press, Clearwater

    Google Scholar 

  • Russell LD, Russell JA, MacGregor GR, Meistrich ML (1991) Linkage of manchette microtubules to the nuclear envelope and observations of the role of the manchette in nuclear shaping during spermiogenesis in rodents. Am J Anat 192(2):97–120. doi:10.1002/aja.1001920202

    Article  PubMed  CAS  Google Scholar 

  • Saito K, Nakamura N, Ito Y, Hoshijima K, Esaki M, Zhao B, Hirose S (2010) Identification of zebrafish Fxyd11a protein that is highly expressed in ion-transporting epithelium of the gill and skin and its possible role in ion homeostasis. Front Physiol 1:129. doi:10.3389/fphys.2010.00129

    Article  PubMed  CAS  Google Scholar 

  • Sato T, Kanai Y, Noma T, Kanai-Azuma M, Taya S, Matsui T, Ishii M, Kawakami H, Kurohmaru M, Kaibuchi K, Wood SA, Hayashi Y (2004) A close correlation in the expression patterns of Af-6 and Usp9x in Sertoli and granulosa cells of mouse testis and ovary. Reproduction 128(5):583–594. doi:10.1530/rep.1.00060

    Article  PubMed  CAS  Google Scholar 

  • Sutovsky P, Moreno RD, Ramalho-Santos J, Dominko T, Simerly C, Schatten G (1999) Ubiquitin tag for sperm mitochondria. Nature 402(6760):371–372. doi:10.1038/46466

    Article  PubMed  CAS  Google Scholar 

  • Sutovsky P, Moreno RD, Ramalho-Santos J, Dominko T, Simerly C, Schatten G (2000) Ubiquitinated sperm mitochondria, selective proteolysis, and the regulation of mitochondrial inheritance in mammalian embryos. Biol Reprod 63(2):582–590

    Article  PubMed  CAS  Google Scholar 

  • Szigyarto CA, Sibbons P, Williams G, Uhlen M, Metcalfe SM (2010) The E3 ligase axotrophin/MARCH-7: protein expression profiling of human tissues reveals links to adult stem cells. J Histochem Cytochem 58(4):301–308. doi:10.1369/jhc.2009.954420

    Article  PubMed  CAS  Google Scholar 

  • Welchman RL, Gordon C, Mayer RJ (2005) Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat Rev Mol Cell Biol 6(8):599–609. doi:10.1038/nrm1700

    Article  PubMed  CAS  Google Scholar 

  • Yang WX, Sperry AO (2003) C-terminal kinesin motor KIFC1 participates in acrosome biogenesis and vesicle transport. Biol Reprod 69(5):1719–1729. doi:10.1095/biolreprod.102.014878

    Article  PubMed  CAS  Google Scholar 

  • Yang WX, Jefferson H, Sperry AO (2006) The molecular motor KIFC1 associates with a complex containing nucleoporin NUP62 that is regulated during development and by the small GTPase RAN. Biol Reprod 74(4):684–690. doi:10.1095/biolreprod.105.049312

    Article  PubMed  CAS  Google Scholar 

  • Yao R, Ito C, Natsume Y, Sugitani Y, Yamanaka H, Kuretake S, Yanagida K, Sato A, Toshimori K, Noda T (2002) Lack of acrosome formation in mice lacking a Golgi protein, GOPC. Proc Natl Acad Sci USA 99(17):11211–11216. doi:10.1073/pnas.162027899

    Article  PubMed  CAS  Google Scholar 

  • Yogo K, Tojima H, Ohno JY, Ogawa T, Nakamura N, Hirose S, Takeya T, Kohsaka T (2012) Identification of SAMT family proteins as substrates of MARCH11 in mouse spermatids. Histochem Cell Biol 137(1):53–65. doi:10.1007/s00418-011-0887-y

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Kazue Okubo of Genostaff for in situ hybridization histochemistry, Yoko Yamamoto, Keiko Yamamichi and Ayako Takada for DNA sequencing and electron microscopy, Akira Kato for technical assistance and Yuriko Ishii for secretary assistance. This work was supported by Grant-in-Aid Scientific Research (24570209, 24117707) and by the Global COE Programs of the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuhiro Nakamura.

Electronic supplementary material

Below is the link to the electronic supplementary material.

418_2012_1043_MOESM1_ESM.tif

Supplementary Fig. S1 a COS7 cells transiently transfected with FLAG-MARCH7 were stained with anti-MARCH7 antiserum (green) and anti-FLAG antibody (red). b COS7 cells transiently transfected with MARCH7 were stained with anti-MARCH7 antiserum (green) and anti-vimentin antibody (red). Nuclei were stained with Hoechst 33342 (blue). Signals were observed with a confocal microscope. Bars, 20 μm. (TIFF 1302 kb)

418_2012_1043_MOESM2_ESM.tif

Supplementary Fig. S2 Sections of rat testis were stained with preimmune serum (green in af). Nuclei were stained with Hoechst 33342 (blue). Signals were observed with a confocal microscope. Bar, 20 μm. (TIFF 704 kb)

418_2012_1043_MOESM3_ESM.tif

Supplementary Fig. S3 The stage-dependent expression of March7 mRNA (pink) and MARCH7 protein (green) is summarized on a map of the developmental cycle of rat spermatogenic cells in seminiferous tubules. Roman numbers indicate the stage of seminiferous epithelial cycle. Arabic numbers indicate the step of spermiogenesis. (TIFF 830 kb)

418_2012_1043_MOESM4_ESM.tif

Supplementary Fig. S4 Immunoelectron microscopy localization of MARCH7 in the elongating spermatids. Rat testicular sections were stained with anti-MARCH7 antiserum (a) or preimmune serum (b) by the pre-embedding immunoperoxidase procedure. Arrowheads indicate the acroplaxome. N, nucleus, Ac, acrosome, MT, manchette. Bars, 1 μm. (TIFF 464 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, B., Ito, K., Iyengar, P.V. et al. MARCH7 E3 ubiquitin ligase is highly expressed in developing spermatids of rats and its possible involvement in head and tail formation. Histochem Cell Biol 139, 447–460 (2013). https://doi.org/10.1007/s00418-012-1043-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-012-1043-z

Keywords

Navigation