Skip to main content

Advertisement

Log in

Proteinase-activated receptor 2 (PAR2) in cholangiocarcinoma (CCA) cells: effects on signaling and cellular level

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

In this study, we demonstrate functional expression of the proteinase-activated receptor 2 (PAR2), a member of a G-protein receptor subfamily in primary cholangiocarcinoma (PCCA) cell cultures. Treatment of PCCA cells with the serine proteinase trypsin and the PAR2-selective activating peptide, furoyl-LIGRLO-NH2, increased migration across a collagen membrane barrier. This effect was inhibited by a PAR2-selective pepducin antagonist peptide (P2pal-18S) and it was also blocked with the Met receptor tyrosine kinase (Met) inhibitors SU 11274 and PHA 665752, the MAPKinase inhibitors PD 98059 and SL 327, and the Stat3 inhibitor Stattic. The involvement of Met, p42/p44 MAPKinases and Stat3 in PAR2-mediated PCCA cell signaling was further supported by the findings that trypsin and the PAR2-selective agonist peptide, 2-furoyl-LIGRLO-NH2, stimulated activating phosphorylation of these signaling molecules in cholangiocarcinoma cells. With our results, we provide a novel signal transduction module in cholangiocarcinoma cell migration involving PAR2-driven activation of Met, p42/p44 MAPKinases and Stat3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF (2003) Met, metastasis, motility and more. Nat Rev Mol Cell Biol 4:915–925

    Article  PubMed  CAS  Google Scholar 

  • Blechacz BR, Smoot RL, Bronk SF, Werneburg NW, Sirica AE, Gores GJ (2009) Sorafenib inhibits signal transducer and activator of transcription-3 signaling in cholangiocarcinoma cells by activating the phosphatase shatterproof 2. Hepatology 50:1861–1870

    Article  PubMed  CAS  Google Scholar 

  • Boccaccio C, Andò M, Tamagnone L, Bardelli A, Michieli P, Battistini C, Comoglio PM (1998) Induction of epithelial tubules by growth factor HGF depends on the STAT pathway. Nature 391:285–288

    Article  PubMed  CAS  Google Scholar 

  • Coelho A, Ossovskaya V, Bunnett N (2003) Proteinase-activated receptor-2: physiological and pathophysiological roles. Curr Med Chem Cardiovasc Hematol Agents 1:61–72

    Article  PubMed  CAS  Google Scholar 

  • Condeelis J, Segall JE (2003) Intravital imaging of cell movement in tumours. Nat Rev Cancer 3:921–930

    Article  PubMed  CAS  Google Scholar 

  • Darmoul D, Gratio V, Devaud H, Laburthe M (2004) Protease-activated receptor 2 in colon cancer: trypsin-induced MAPK phosphorylation and cell proliferation are mediated by epidermal growth factor receptor transactivation. J Biol Chem 279:20927–20934

    Article  PubMed  CAS  Google Scholar 

  • Farrow B, Albo D, Berger DH (2008) The role of the tumor microenvironment in the progression of pancreatic cancer. J Surg Res 149:319–328

    Article  PubMed  Google Scholar 

  • Ge L, Shenoy S, Lefkowitz R, DeFea K (2004) Constitutive protease-activated receptor-2-mediated migration of MDA MB-231 breast cancer cells requires both beta-arrestin-1 and -2. J Biol Chem 279:55419–55424

    Article  PubMed  CAS  Google Scholar 

  • Gee K, Brown K, Chen W, Bishop-Stewart J, Gray D, Johnson I (2000) Chemical and physiological characterization of fluo-4 Ca(2+)-indicator dyes. Cell Calcium 27:97–106

    Article  PubMed  CAS  Google Scholar 

  • Gherardi E, Birchmeier W, Birchmeier C, Woude GV (2012) Targeting MET in cancer: rationale and progress. Nat Rev Cancer 12:89–103

    Article  PubMed  CAS  Google Scholar 

  • Grab D, Garcia-Garcia J, Nikolskaia O, Kim Y, Brown A, Pardo C, Zhang Y, Becker K, Wilson B, de Lima A, Scharfstein J, Dumler J (2009) Protease activated receptor signaling is required for African trypanosome traversal of human brain microvascular endothelial cells. PLoS Negl Trop Dis 3:e479

    Article  PubMed  Google Scholar 

  • Grynkiewicz G, Poenie M, Tsien R (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    PubMed  CAS  Google Scholar 

  • Hjortoe G, Petersen L, Albrektsen T, Sorensen B, Norby P, Mandal S, Pendurthi U, Rao L (2004) Tissue factor–factor VIIa-specific up-regulation of IL-8 expression in MDA-MB-231 cells is mediated by PAR-2 and results in increased cell migration. Blood 103:3029–3037

    Article  PubMed  CAS  Google Scholar 

  • Hollenberg M, Renaux B, Hyun E, Houle S, Vergnolle N, Saifeddine M, Ramachandran R (2008) Derivatized 2-furoyl-LIGRLO-amide, a versatile and selective probe for proteinase-activated receptor 2: binding and visualization. J Pharmacol Exp Ther 326:453–462

    Article  PubMed  CAS  Google Scholar 

  • Isomoto H, Mott JL, Kobayashi S, Werneburg NW, Bronk SF, Haan S, Gores GJ (2007) Sustained IL-6/STAT-3 signaling in cholangiocarcinoma cells due to SOCS-3 epigenetic silencing. Gastroenterology 132:384–396

    Article  PubMed  CAS  Google Scholar 

  • Jikuhara A, Yoshii M, Iwagaki H, Mori S, Nishibori M, Tanaka N (2003) MAP kinase-mediated proliferation of DLD-1 carcinoma by the stimulation of protease-activated receptor 2. Life Sci 73:2817–2829

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann R, Schafberg H, Nowak G (1998) Proteinase-activated receptor-2-mediated signaling and inhibition of DNA synthesis in human pancreatic cancer cells. Int J Pancreatol 24:97–102

    PubMed  CAS  Google Scholar 

  • Kaufmann R, Junker B, Junker K, Nuske K, Ranke C, Zieger M, Scheele J (2002) The serine proteinase thrombin promotes migration of human renal carcinoma cells by a PKA-dependent mechanism. Cancer Lett 180:183–190

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann R, Oettel C, Horn A, Halbhuber K, Eitner A, Krieg R, Katenkamp K, Henklein P, Westermann M, Böhmer F, Ramachandran R, Saifeddine M, Hollenberg M, Settmacher U (2009) Met receptor tyrosine kinase transactivation is involved in proteinase-activated receptor-2-mediated hepatocellular carcinoma cell invasion. Carcinogenesis 30:1487–1496

    Article  PubMed  CAS  Google Scholar 

  • Kawabata A, Nishikawa H, Kuroda R, Kawai K, Hollenberg M (2000) Proteinase-activated receptor-2 (PAR-2): regulation of salivary and pancreatic exocrine secretion in vivo in rats and mice. Br J Pharmacol 129:1808–1814

    Article  PubMed  CAS  Google Scholar 

  • Le Clainche C, Carlier M (2008) Regulation of actin assembly associated with protrusion and adhesion in cell migration. Physiol Rev 88(2):489–513

    Article  PubMed  Google Scholar 

  • Leelawat K, Leelawat S, Tepaksorn P, Rattanasinganchan P, Leungchaweng A, Tohtong R, Sobhon P (2006) Involvement of c-Met/hepatocyte growth factor pathway in cholangiocarcinoma cell invasion and its therapeutic inhibition with small interfering RNA specific for c-Met. J Surg Res 136:78–84

    Article  PubMed  CAS  Google Scholar 

  • Magnus N, Garnier D, Rak J (2010) Oncogenic epidermal growth factor receptor up-regulates multiple elements of the tissue factor signaling pathway in human glioma cells. Blood 116:815–818

    Article  PubMed  CAS  Google Scholar 

  • McGuire J, Saifeddine M, Triggle C, Sun K, Hollenberg M (2004) 2-Furoyl-LIGRLO-amide: a potent and selective proteinase-activated receptor 2 agonist. J Pharmacol Exp Ther 309:1124–1131

    Article  PubMed  CAS  Google Scholar 

  • McSherry EA, Donatello S, Hopkins AM, McDonnell S (2007) Molecular basis of invasion in breast cancer. Cell Mol Life Sci 64:3201–3218

    Article  PubMed  CAS  Google Scholar 

  • Menakongka A, Suthiphongchai T (2010) Involvement of PI3K and ERK1/2 pathways in hepatocyte growth factor-induced cholangiocarcinoma cell invasion. World J Gastroenterol 16:713–722

    Article  PubMed  CAS  Google Scholar 

  • Molino M, Woolkalis MJ, Reavey-Cantwell J, Praticó D, Andrade-Gordon P, Barnathan ES, Brass LF (1997) Endothelial cell thrombin receptors and PAR-2. Two protease-activated receptors located in a single cellular environment. J Biol Chem 272:11133–11141

    Article  PubMed  CAS  Google Scholar 

  • Morris D, Ding Y, Ricks T, Gullapalli A, Wolfe B, Trejo J (2006) Protease-activated receptor-2 is essential for factor VIIa and Xa-induced signaling, migration, and invasion of breast cancer cells. Cancer Res 66:307–314

    Article  PubMed  CAS  Google Scholar 

  • Nakanuma S, Tajima H, Okamoto K, Hayashi H, Nakagawara H, Onishi I, Takamura H, Kitagawa H, Fushida S, Tani T, Fujimura T, Kayahara M, Ohta T, Wakayama T, Iseki S, Harada S (2010) Tumor-derived trypsin enhances proliferation of intrahepatic cholangiocarcinoma cells by activating protease-activated receptor-2. Int J Oncol 36(4):793–800

    Article  PubMed  CAS  Google Scholar 

  • Nickel TJ, Kabir MH, Talreja J, Stechschulte DJ, Dileepan KN (2006) Constitutive expression of functionally active protease-activated receptors 1 and 2 in human conjunctival epithelial cells. Mediators Inflamm 2006:61359

    Article  PubMed  Google Scholar 

  • Nystedt S, Emilsson K, Wahlestedt C, Sundelin J (1994) Molecular cloning of a potential proteinase activated receptor. Proc Natl Acad Sci USA 91:9208–9212

    Article  PubMed  CAS  Google Scholar 

  • Okamoto W, Okamoto I, Arao T, Yanagihara K, Nishio K, Nakagawa K (2011) Differential roles of STAT3 depending on the mechanism of STAT3 activation in gastric cancer cells. Br J Cancer 105:407–412

    Article  PubMed  CAS  Google Scholar 

  • Ossovskaya V, Bunnett N (2004) Protease-activated receptors: contribution to physiology and disease. Physiol Rev 84:579–621

    Article  PubMed  CAS  Google Scholar 

  • Peruzzi B, Bottaro DP (2006) Targeting the c-Met signaling pathway in cancer. Clin Cancer Res 12:3657–3660

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran R, Hollenberg M (2008) Proteinases and signalling: pathophysiological and therapeutic implications via PARs and more. Br J Pharmacol 153(Suppl 1):S263–S282

    PubMed  CAS  Google Scholar 

  • Ramachandran R, Noorbakhsh F, Defea K, Hollenberg MD (2012) Targeting proteinase-activated receptors: therapeutic potential and challenges. Nat Rev Drug Discov 11:69–86

    Article  PubMed  CAS  Google Scholar 

  • Rattenholl A, Seeliger S, Buddenkotte J, Schön M, Schön M, Ständer S, Vergnolle N, Steinhoff M (2007) Proteinase-activated receptor-2 (PAR2): a tumor suppressor in skin carcinogenesis. J Invest Dermatol 127:2245–2252

    Article  PubMed  CAS  Google Scholar 

  • Schmitz KJ, Lang H, Wohlschlaeger J, Sotiropoulos GC, Reis H, Schmid KW, Baba HA (2007) AKT and ERK1/2 signaling in intrahepatic cholangiocarcinoma. World J Gastroenterol 13:6470–6477

    Article  PubMed  CAS  Google Scholar 

  • Schust J, Sperl B, Hollis A, Mayer TU, Berg T (2006) Stattic: a small-molecule inhibitor of STAT3 activation and dimerization. Chem Biol 13:1235–1242

    Article  PubMed  CAS  Google Scholar 

  • Sevigny LM, Zhang P, Bohm A, Lazarides K, Perides G, Covic L, Kuliopulos A (2011) Interdicting protease-activated receptor-2-driven inflammation with cell-penetrating pepducins. Proc Natl Acad Sci USA 108(20):8491–8496

    Article  PubMed  CAS  Google Scholar 

  • Shi X, Gangadharan B, Brass L, Ruf W, Mueller B (2004) Protease-activated receptors (PAR1 and PAR2) contribute to tumor cell motility and metastasis. Mol Cancer Res 2:395–402

    PubMed  CAS  Google Scholar 

  • Shimamoto R, Sawada T, Uchima Y, Inoue M, Kimura K, Yamashita Y, Yamada N, Nishihara T, Ohira M, Hirakawa K (2004) A role for protease-activated receptor-2 in pancreatic cancer cell proliferation. Int J Oncol 24:1401–1406

    PubMed  CAS  Google Scholar 

  • Socoteanu MP, Mott F, Alpini G, Frankel AE (2008) c-Met targeted therapy of cholangiocarcinoma. World J Gastroenterol 14:2990–2994

    Article  PubMed  CAS  Google Scholar 

  • Steinhoff M, Buddenkotte J, Shpacovitch V, Rattenholl A, Moormann C, Vergnolle N, Luger T, Hollenberg M (2005) Proteinase-activated receptors: transducers of proteinase-mediated signaling in inflammation and immune response. Endocr Rev 26:1–43

    Article  PubMed  CAS  Google Scholar 

  • Svitkina T, Bulanova E, Chaga O, Vignjevic D, Kojima S, Vasiliev J, Borisy G (2003) Mechanism of filopodia initiation by reorganization of a dendritic network. J Cell Biol 160(3):409–421

    Article  PubMed  CAS  Google Scholar 

  • Terada T, Okada Y, Nakanuma Y (1996) Expression of immunoreactive matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in human normal livers and primary liver tumors. Hepatology 23:1341–1344

    Article  PubMed  CAS  Google Scholar 

  • Varnholt H, Asayama Y, Aishima S, Taguchi K, Sugimachi K, Tsuneyoshi M (2002) C-met and hepatocyte growth factor expression in combined hepatocellular and cholangiocarcinoma. Oncol Rep 9:35–41

    PubMed  CAS  Google Scholar 

  • Versteeg H, Schaffner F, Kerver M, Petersen H, Ahamed J, Felding-Habermann B, Takada Y, Mueller B, Ruf W (2008) Inhibition of tissue factor signaling suppresses tumor growth. Blood 111:190–199

    Article  PubMed  CAS  Google Scholar 

  • Welzel T, McGlynn K, Hsing A, O’Brien T, Pfeiffer R (2006) Impact of classification of hilar cholangiocarcinomas (Klatskin tumors) on the incidence of intra- and extrahepatic cholangiocarcinoma in the United States. J Natl Cancer Inst 98(12):873–875

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Beate Schulze and Elke Oswald, Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, and Frank Steiniger, Electron Microscopy Center, University Hospital Jena for the excellent technical assistance. This work was supported in part by German Cancer Aid (R.K., Project 108809).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Kaufmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaufmann, R., Hascher, A., Mußbach, F. et al. Proteinase-activated receptor 2 (PAR2) in cholangiocarcinoma (CCA) cells: effects on signaling and cellular level. Histochem Cell Biol 138, 913–924 (2012). https://doi.org/10.1007/s00418-012-1006-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-012-1006-4

Keywords

Navigation