Skip to main content
Log in

The interaction between CD44 on tumour cells and hyaluronan under physiologic flow conditions: implications for metastasis formation

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The adhesion of tumour cells to the endothelial cells of blood vessels of the microcirculation represents a crucial step in haematogenous metastasis formation. Similar to leukocyte extravasation, selectins mediate initial tumour cell rolling on endothelium. An additional mechanism of leukocyte adhesion to endothelial cells is mediated by hyaluronan (HA). However, data on the interaction of tumour cells with hyaluronan under shear stress are lacking. The expression of the hyaluronan binding protein CD44 on tumour cell surfaces was evaluated using flow cytometry. The adhesion of tumour cells to HA with regard to adhesive events and rolling velocity was determined in flow assays in the human small cell lung cancer (SCLC) cell lines SW2, H69, H82, OH1 and OH3, the colon carcinoma cell line HT29 and the melanoma cell line MeWo. Hyaluronan deposition in human and mouse lung blood vessels was histochemically determined. MeWo adhered best to HA followed by HT29. SCLC cell lines showed the lowest CD44 expression on the cell surface and lowest number of adhesive events. While hyaluronan was deposited in patches in the microvasculature of the alveolar septum in the human lung, it was only present in the periarterial space in the mouse lung. Certain tumour entities bind to HA under physiological shear stresses so that HA can be considered a further ligand for cell extravasation in haematogenous metastasis. As hyaluronan is deposited within the pulmonary microvasculature, it may well serve as a ligand for its binding partner CD44, which is expressed by many tumour cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aruffo A, Stamenkovic I, Melnick M, Underhill CB, Seed B (1990) CD44 is the principal cell surface receptor for hyaluronate. Cell 61:1303–1313

    Article  PubMed  CAS  Google Scholar 

  • Bourguignon LY, Kalomiris EL, Lokeshwar VB (1991) Acylation of the lymphoma transmembrane glycoprotein, GP85, may be required for GP85-ankyrin interaction. J Biol Chem 266:11761–11765

    PubMed  CAS  Google Scholar 

  • Clark RA, Alon R, Springer TA (1996) CD44 and hyaluronan-dependent rolling interactions of lymphocytes on tonsillar stroma. J Cell Biol 134:1075–1087

    Article  PubMed  CAS  Google Scholar 

  • DeGrendele HC, Estess P, Picker LJ, Siegelman MH (1996) CD44 and its ligand hyaluronate mediate rolling under physiologic flow: a novel lymphocyte-endothelial cell primary adhesion pathway. J Exp Med 183:1119–1130

    Article  PubMed  CAS  Google Scholar 

  • Dimitroff CJ, Lee JY, Rafii S, Fuhlbrigge RC, Sackstein R (2001) CD44 is a major E-selectin ligand on human hematopoietic progenitor cells. J Cell Biol 153:1277–1286

    Article  PubMed  CAS  Google Scholar 

  • Dimitroff CJ, Lechpammer M, Long-Woodward D, Kutok JL (2004) Rolling of human bone-metastatic prostate tumor cells on human bone marrow endothelium under shear flow is mediated by E-selectin. Cancer Res 64:5261–5269

    Article  PubMed  CAS  Google Scholar 

  • Feuerhake F, Fuchsl G, Bals R, Welsch U (1998) Expression of inducible cell adhesion molecules in the normal human lung: immunohistochemical study of their distribution in pulmonary blood vessels. Histochem Cell Biol 110:387–394

    Article  PubMed  CAS  Google Scholar 

  • Fidler IJ (1989) Origin and biology of cancer metastasis. Cytometry 10:673–680

    Article  PubMed  CAS  Google Scholar 

  • Fox SB, Fawcett J, Jackson DG, Collins I, Gatter KC, Harris AL, Gearing A, Simmons DL (1994) Normal human tissues, in addition to some tumors, express multiple different CD44 isoforms. Cancer Res 54:4539–4546

    PubMed  CAS  Google Scholar 

  • Fraser JR, Laurent TC, Laurent UB (1997) Hyaluronan: its nature, distribution, functions and turnover. J Intern Med 242:27–33

    Article  PubMed  CAS  Google Scholar 

  • Gal I, Lesley J, Ko W, Gonda A, Stoop R, Hyman R, Mikecz K (2003) Role of the extracellular and cytoplasmic domains of CD44 in the rolling interaction of lymphoid cells with hyaluronan under physiologic flow. J Biol Chem 278:11150–11158

    Article  PubMed  CAS  Google Scholar 

  • Giavazzi R, Foppolo M, Dossi R, Remuzzi A (1993) Rolling and adhesion of human tumor cells on vascular endothelium under physiological flow conditions. J Clin Invest 92:3038–3044

    Article  PubMed  CAS  Google Scholar 

  • Gunthert U, Hofmann M, Rudy W, Reber S, Zoller M, Haussmann I, Matzku S, Wenzel A, Ponta H, Herrlich P (1991) A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell 65:13–24

    Article  PubMed  CAS  Google Scholar 

  • Guo Y, Ma J, Wang J, Che X, Narula J, Bigby M, Wu M, Sy MS (1994) Inhibition of human melanoma growth and metastasis in vivo by anti-CD44 monoclonal antibody. Cancer Res 54:1561–1565

    PubMed  CAS  Google Scholar 

  • Haynes BF, Telen MJ, Hale LP, Denning SM (1989) CD44–a molecule involved in leukocyte adherence and T-cell activation. Immunol Today 10:423–428

    Article  PubMed  CAS  Google Scholar 

  • Horst E, Meijer CJ, Radaszkiewicz T, Ossekoppele GJ, Van Krieken JH, Pals ST (1990) Adhesion molecules in the prognosis of diffuse large-cell lymphoma: expression of a lymphocyte homing receptor (CD44), LFA-1 (CD11a/18), and ICAM-1 (CD54). Leukemia 4:595–599

    PubMed  CAS  Google Scholar 

  • Hunter KW, Crawford NP, Alsarraj J (2008) Mechanisms of metastasis. Breast Cancer Res 10(Suppl 1):S2

    Article  PubMed  Google Scholar 

  • Jalkanen ST, Bargatze RF, Herron LR, Butcher EC (1986) A lymphoid cell surface glycoprotein involved in endothelial cell recognition and lymphocyte homing in man. Eur J Immunol 16:1195–1202

    Article  PubMed  CAS  Google Scholar 

  • Jalkanen S, Bargatze RF, de los Toyos J, Butcher EC (1987) Lymphocyte recognition of high endothelium: antibodies to distinct epitopes of an 85–95-kD glycoprotein antigen differentially inhibit lymphocyte binding to lymph node, mucosal, or synovial endothelial cells. J Cell Biol 105:983–990

    Article  PubMed  CAS  Google Scholar 

  • Kargi HA, Kuyucuoglu MF, Alakavuklar M, Akpinar O, Erk S (1997) CD44 expression in metastatic and non-metastatic non-small cell lung cancers. Cancer Lett 119:27–30

    Article  PubMed  CAS  Google Scholar 

  • Klingbeil P, Marhaba R, Jung T, Kirmse R, Ludwig T, Zoller M (2009) CD44 variant isoforms promote metastasis formation by a tumor cell-matrix cross-talk that supports adhesion and apoptosis resistance. Mol Cancer Res 7:168–179

    Article  PubMed  CAS  Google Scholar 

  • Köhler S, Ullrich S, Richter U, Schumacher U (2010) E-/P-selectins and colon carcinoma metastasis: first in vivo evidence for their crucial role in a clinically relevant model of spontaneous metastasis formation in the lung. Br J Cancer 102:602–609

    Article  PubMed  Google Scholar 

  • Kuppner MC, Van Meir E, Gauthier T, Hamou MF, de Tribolet N (1992) Differential expression of the CD44 molecule in human brain tumours. Int J Cancer 50:572–577

    Article  PubMed  CAS  Google Scholar 

  • Lawrence MB, Springer TA (1991) Leukocytes roll on a selectin at physiologic flow rates: distinction from and prerequisite for adhesion through integrins. Cell 65:859–873

    Article  PubMed  CAS  Google Scholar 

  • Lawrence MB, Springer TA (1993) Neutrophils roll on E-selectin. J Immunol 151:6338–6346

    PubMed  CAS  Google Scholar 

  • Lawrence MB, McIntire LV, Eskin SG (1987) Effect of flow on polymorphonuclear leukocyte/endothelial cell adhesion. Blood 70:1284–1290

    PubMed  CAS  Google Scholar 

  • Miyake K, Medina KL, Hayashi S, Ono S, Hamaoka T, Kincade PW (1990) Monoclonal antibodies to Pgp-1/CD44 block lympho-hemopoiesis in long-term bone marrow cultures. J Exp Med 171:477–488

    Article  PubMed  CAS  Google Scholar 

  • Mohamadzadeh M, DeGrendele H, Arizpe H, Estess P, Siegelman M (1998) Proinflammatory stimuli regulate endothelial hyaluronan expression and CD44/HA-dependent primary adhesion. J Clin Invest 101:97–108

    Article  PubMed  CAS  Google Scholar 

  • Nandi A, Estess P, Siegelman MH (2000) Hyaluronan anchoring and regulation on the surface of vascular endothelial cells is mediated through the functionally active form of CD44. J Biol Chem 275:14939–14948

    Article  PubMed  CAS  Google Scholar 

  • Reber S, Matzku S, Gunthert U, Ponta H, Herrlich P, Zoller M (1990) Retardation of metastatic tumor growth after immunization with metastasis-specific monoclonal antibodies. Int J Cancer 46:919–927

    Article  PubMed  CAS  Google Scholar 

  • Richter U, Schroder C, Wicklein D, Lange T, Geleff S, Dippel V, Schumacher U, Klutmann S (2011) Adhesion of small cell lung cancer cells to E- and P-Selectin under physiological flow conditions: implications for metastasis formation. Histochem Cell Biol 135:499–512

    Article  PubMed  CAS  Google Scholar 

  • Seiter S, Arch R, Reber S, Komitowski D, Hofmann M, Ponta H, Herrlich P, Matzku S, Zoller M (1993) Prevention of tumor metastasis formation by anti-variant CD44. J Exp Med 177:443–455

    Article  PubMed  CAS  Google Scholar 

  • Shimizu Y, Van Seventer GA, Siraganian R, Wahl L, Shaw S (1989) Dual role of the CD44 molecule in T cell adhesion and activation. J Immunol 143:2457–2463

    PubMed  CAS  Google Scholar 

  • Stamenkovic I, Amiot M, Pesando JM, Seed B (1989) A lymphocyte molecule implicated in lymph node homing is a member of the cartilage link protein family. Cell 56:1057–1062

    Article  PubMed  CAS  Google Scholar 

  • Toole BP (1990) Hyaluronan and its binding proteins, the hyaladherins. Curr Opin Cell Biol 2:839–844

    Article  PubMed  CAS  Google Scholar 

  • Trochon V, Mabilat C, Bertrand P, Legrand Y, Smadja-Joffe F, Soria C, Delpech B, Lu H (1996) Evidence of involvement of CD44 in endothelial cell proliferation, migration and angiogenesis in vitro. Int J Cancer 66:664–668

    Article  PubMed  CAS  Google Scholar 

  • Underhill CB (1989) The interaction of hyaluronate with the cell surface: the hyaluronate receptor and the core protein. Ciba Found Symp 143:87–99 (discussion 100–106, 281–285)

    PubMed  CAS  Google Scholar 

  • Underhill C (1992) CD44: the hyaluronan receptor. J Cell Sci 103(Pt 2):293–298

    PubMed  CAS  Google Scholar 

  • Valentiner U, Valentiner FU, Schumacher U (2008) Expression of CD44 is associated with a metastatic pattern of human neuroblastoma cells in a SCID mouse xenograft model. Tumor Biol 29:152–160

    Article  CAS  Google Scholar 

  • Webb DS, Shimizu Y, Van Seventer GA, Shaw S, Gerrard TL (1990) LFA-3, CD44, and CD45: physiologic triggers of human monocyte TNF and IL-1 release. Science 249:1295–1297

    Article  PubMed  CAS  Google Scholar 

  • Weiss L (1990) Metastatic inefficiency. Adv Cancer Res 54:159–211

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Andrea Horst for her excellent technical help. UR was supported by a scholarship from the Werner Otto Foundation which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Richter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richter, U., Wicklein, D., Geleff, S. et al. The interaction between CD44 on tumour cells and hyaluronan under physiologic flow conditions: implications for metastasis formation. Histochem Cell Biol 137, 687–695 (2012). https://doi.org/10.1007/s00418-012-0916-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-012-0916-5

Keywords

Navigation