Characterization and identification of Sox2+ radial glia cells derived from rat embryonic cerebral cortex

  • Haoming Li
  • Guohua Jin
  • Jianbing Qin
  • Meiling Tian
  • Jinhong Shi
  • Weiwei Yang
  • Xuefeng Tan
  • Xinhua Zhang
  • Linqing Zou
Original Paper

Abstract

During the central nervous system (CNS) development, radial glia cells (RGCs) play at least two essential roles, they contribute to neuronal production and the subsequent guidance of neuronal migration, whereas its precise distribution and contribution to cerebral cortex remains less understood. In this research, we used Vimentin as an astroglial marker and Sox2 as a neural progenitor marker to identify and investigate RGCs in rat cerebral cortex at embryonic day (E) 16.5. We found that the Sox2+ progenitor cells localized in the germinal zone (GZ) of E16.5 cerebral cortex, ~95% Sox2+ cells co-localized with Vimentin+ or Nestin+ radial processes which extended to the pial surface across the cortical plate (CP). In vitro, we obtained RG-like cells from E16.5 cerebral cortex on adherent conditions, these Sox2+ Radial glia (RG)-like cells shared some properties with RGCs in vivo, and these Sox2+ RG-like cells could differentiate into astrocytes, oligodendrocytes and presented the radial glia—neuron lineage differentiation ability. Taken together, we identified and investigated some characterizations and properties of Sox2+ RGCs derived from E16.5 cerebral cortex, we suggested that the embryonic Sox2+ progenitor cells which located in the cortical GZ were mainly composed of Sox2+ RGCs, and the cortex-derived Sox2+ RG-like cells displayed the radial glia—neuron lineage differentiation ability as neuronal progenitors in vitro.

Keywords

Radial glia cells Cerebral cortex Vimentin Sox2 GFAP 

References

  1. Anthony TE, Klein C, Fishell G, Heintz N (2004) Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron 41:881–890PubMedCrossRefGoogle Scholar
  2. Balu DT, Lucki I (2009) Adult hippocampal neurogenesis: regulation, functional implications, and contribution to disease pathology. Neurosci Biobehav Rev 33:232–252PubMedCrossRefGoogle Scholar
  3. Bibel M, Richter J, Schrenk K, Tucker KL, Staiger V, Korte M, Goetz M, Barde YA (2004) Differentiation of mouse embryonic stem cells into a defined neuronal lineage. Nat Neurosci 7:1003–1009PubMedCrossRefGoogle Scholar
  4. Brannvall K, Bogdanovic N, Korhonen L, Lindholm D (2005) 19-Nortestosterone influences neural stem cell proliferation and neurogenesis in the rat brain. Eur J Neurosci 21:871–878PubMedCrossRefGoogle Scholar
  5. Brunne B, Zhao S, Derouiche A, Herz J, May P, Frotscher M, Bock HH (2010) Origin, maturation, and astroglial transformation of secondary radial glial cells in the developing dentate gyrus. Glia 58:1553–1569PubMedGoogle Scholar
  6. Conti L, Pollard SM, Gorba T, Reitano E, Toselli M, Biella G, Sun Y, Sanzone S, Ying QL, Cattaneo E, Smith A (2005) Niche-independent symmetrical self-renewal of a mammalian tissue stem cell. PLoS Biol 3:e283PubMedCrossRefGoogle Scholar
  7. Costa MR, Bucholz O, Schroeder T, Gotz M (2009) Late origin of glia-restricted progenitors in the developing mouse cerebral cortex. Cereb Cortex 19(Suppl 1):i135–i143PubMedCrossRefGoogle Scholar
  8. Culican SM, Baumrind NL, Yamamoto M, Pearlman AL (1990) Cortical radial glia: identification in tissue culture and evidence for their transformation to astrocytes. J Neurosci 10:684–692PubMedGoogle Scholar
  9. Doetsch F (2003a) The glial identity of neural stem cells. Nat Neurosci 6:1127–1134PubMedCrossRefGoogle Scholar
  10. Doetsch F (2003b) A niche for adult neural stem cells. Curr Opin Genet Dev 13:543–550PubMedCrossRefGoogle Scholar
  11. Ellis P, Fagan BM, Magness ST, Hutton S, Taranova O, Hayashi S, McMahon A, Rao M, Pevny L (2004) SOX2, a persistent marker for multipotential neural stem cells derived from embryonic stem cells, the embryo or the adult. Dev Neurosci 26:148–165PubMedCrossRefGoogle Scholar
  12. Fox IJ, Paucar AA, Nakano I, Mottahedeh J, Dougherty JD, Kornblum HI (2004) Developmental expression of glial fibrillary acidic protein mRNA in mouse forebrain germinal zones—implications for stem cell biology. Brain Res Dev Brain Res 153:121–125PubMedCrossRefGoogle Scholar
  13. Glaser T, Brustle O (2005) Retinoic acid induction of ES-cell-derived neurons: the radial glia connection. Trends Neurosci 28:397–400PubMedCrossRefGoogle Scholar
  14. Goldman JE, Vaysse PJ (1991) Tracing glial cell lineages in the mammalian forebrain. Glia 4:149–156PubMedCrossRefGoogle Scholar
  15. Gregg C, Weiss S (2003) Generation of functional radial glial cells by embryonic and adult forebrain neural stem cells. J Neurosci 23:11587–11601PubMedGoogle Scholar
  16. Gubert F, Zaverucha-do-Valle C, Pimentel-Coelho PM, Mendez-Otero R, Santiago MF (2009) Radial glia-like cells persist in the adult rat brain. Brain Res 1258:43–52PubMedCrossRefGoogle Scholar
  17. Hartfuss E, Galli R, Heins N, Gotz M (2001) Characterization of CNS precursor subtypes and radial glia. Dev Biol 229:15–30PubMedCrossRefGoogle Scholar
  18. Heinrich C, Blum R, Gascon S, Masserdotti G, Tripathi P, Sanchez R, Tiedt S, Schroeder T, Gotz M, Berninger B (2010) Directing astroglia from the cerebral cortex into subtype specific functional neurons. PLoS Biol 8:e1000373PubMedCrossRefGoogle Scholar
  19. Horne MK, Nisbet DR, Forsythe JS, Parish CL (2010) Three-dimensional nanofibrous scaffolds incorporating immobilized BDNF promote proliferation and differentiation of cortical neural stem cells. Stem Cells Dev 19:843–852PubMedCrossRefGoogle Scholar
  20. Hunter KE, Hatten ME (1995) Radial glial cell transformation to astrocytes is bidirectional: regulation by a diffusible factor in embryonic forebrain. Proc Natl Acad Sci USA 92:2061–2065PubMedCrossRefGoogle Scholar
  21. Kriegstein A, Alvarez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32:149–184PubMedCrossRefGoogle Scholar
  22. Kriegstein AR, Gotz M (2003) Radial glia diversity: a matter of cell fate. Glia 43:37–43PubMedCrossRefGoogle Scholar
  23. Li H, Jin G, Qin J, Yang W, Tian M, Tan X, Zhang X, Shi J, Zou L (2011) Identification of neonatal rat hippocampal radial glia cells in vitro. Neurosci Lett 490:209–214PubMedCrossRefGoogle Scholar
  24. Liu Y, Namba T, Liu J, Suzuki R, Shioda S, Seki T (2010) Glial fibrillary acidic protein-expressing neural progenitors give rise to immature neurons via early intermediate progenitors expressing both glial fibrillary acidic protein and neuronal markers in the adult hippocampus. Neuroscience 166:241–251PubMedCrossRefGoogle Scholar
  25. Malatesta P, Hack MA, Hartfuss E, Kettenmann H, Klinkert W, Kirchhoff F, Gotz M (2003) Neuronal or glial progeny: regional differences in radial glia fate. Neuron 37:751–764PubMedCrossRefGoogle Scholar
  26. Malatesta P, Hartfuss E, Gotz M (2000) Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127:5253–5263PubMedGoogle Scholar
  27. Merkle FT, Tramontin AD, Garcia-Verdugo JM, Alvarez-Buylla A (2004) Radial glia give rise to adult neural stem cells in the subventricular zone. Proc Natl Acad Sci USA 101:17528–17532PubMedCrossRefGoogle Scholar
  28. Mo Z, Moore AR, Filipovic R, Ogawa Y, Kazuhiro I, Antic SD, Zecevic N (2007) Human cortical neurons originate from radial glia and neuron-restricted progenitors. J Neurosci 27:4132–4145PubMedCrossRefGoogle Scholar
  29. Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR (2001) Neurons derived from radial glial cells establish radial units in neocortex. Nature 409:714–720PubMedCrossRefGoogle Scholar
  30. Pevny LH, Nicolis SK (2010) Sox2 roles in neural stem cells. Int J Biochem Cell Biol 42:421–424PubMedCrossRefGoogle Scholar
  31. Pollard SM, Conti L (2007) Investigating radial glia in vitro. Prog Neurobiol 83:53–67PubMedCrossRefGoogle Scholar
  32. Pollard SM, Conti L, Sun Y, Goffredo D, Smith A (2006) Adherent neural stem (NS) cells from fetal and adult forebrain. Cereb Cortex 16(Suppl 1):i112–i120PubMedCrossRefGoogle Scholar
  33. Poluch S, Juliano SL (2010) Populations of radial glial cells respond differently to reelin and neuregulin1 in a ferret model of cortical dysplasia. PLoS One 5:e13709PubMedCrossRefGoogle Scholar
  34. Sancho-Tello M, Valles S, Montoliu C, Renau-Piqueras J, Guerri C (1995) Developmental pattern of GFAP and vimentin gene expression in rat brain and in radial glial cultures. Glia 15:157–166PubMedCrossRefGoogle Scholar
  35. Scharfman H, Goodman J, Macleod A, Phani S, Antonelli C, Croll S (2005) Increased neurogenesis and the ectopic granule cells after intrahippocampal BDNF infusion in adult rats. Exp Neurol 192:348–356PubMedCrossRefGoogle Scholar
  36. Schmechel DE, Rakic P (1979) A Golgi study of radial glial cells in developing monkey telencephalon: morphogenesis and transformation into astrocytes. Anat Embryol (Berl) 156:115–152CrossRefGoogle Scholar
  37. Seri B, Garcia-Verdugo JM, Collado-Morente L, McEwen BS, Alvarez-Buylla A (2004) Cell types, lineage, and architecture of the germinal zone in the adult dentate gyrus. J Comp Neurol 478:359–378PubMedCrossRefGoogle Scholar
  38. Suh H, Consiglio A, Ray J, Sawai T, D’Amour KA, Gage FH (2007) In vivo fate analysis reveals the multipotent and self-renewal capacities of Sox2+ neural stem cells in the adult hippocampus. Cell Stem Cell 1:515–528PubMedCrossRefGoogle Scholar
  39. Sun Y, Pollard S, Conti L, Toselli M, Biella G, Parkin G, Willatt L, Falk A, Cattaneo E, Smith A (2008) Long-term tripotent differentiation capacity of human neural stem (NS) cells in adherent culture. Mol Cell Neurosci 38:245–258PubMedCrossRefGoogle Scholar
  40. Tramontin AD, Garcia-Verdugo JM, Lim DA, Alvarez-Buylla A (2003) Postnatal development of radial glia and the ventricular zone (VZ): a continuum of the neural stem cell compartment. Cereb Cortex 13:580–587PubMedCrossRefGoogle Scholar
  41. Voigt T (1989) Development of glial cells in the cerebral wall of ferrets: direct tracing of their transformation from radial glia into astrocytes. J Comp Neurol 289:74–88PubMedCrossRefGoogle Scholar
  42. Wang Q, Wang ZP, Xu Q, Bao N (2009) Effects of ganglioside 1 and nerve growth factor on the proliferation of neural stem cells in vitro. Zhongguo Dang Dai Er Ke Za Zhi 11:841–845PubMedGoogle Scholar
  43. Weissman T, Noctor SC, Clinton BK, Honig LS, Kriegstein AR (2003) Neurogenic radial glial cells in reptile, rodent and human: from mitosis to migration. Cereb Cortex 13:550–559PubMedCrossRefGoogle Scholar
  44. Zhang Y, Niu B, Yu D, Cheng X, Liu B, Deng J (2010) Radial glial cells and the lamination of the cerebellar cortex. Brain Struct Funct 215:115–122PubMedCrossRefGoogle Scholar
  45. Zhao R, Daley GQ (2008) From fibroblasts to iPS cells: induced pluripotency by defined factors. J Cell Biochem 105:949–955PubMedCrossRefGoogle Scholar
  46. Zhu W, Cheng S, Xu G, Ma M, Zhou Z, Liu D, Liu X (2011) Intranasal nerve growth factor enhances striatal neurogenesis in adult rats with focal cerebral ischemia. Drug Deliv 18:338–343Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Haoming Li
    • 1
    • 2
  • Guohua Jin
    • 1
    • 2
  • Jianbing Qin
    • 2
  • Meiling Tian
    • 2
  • Jinhong Shi
    • 2
  • Weiwei Yang
    • 2
  • Xuefeng Tan
    • 2
  • Xinhua Zhang
    • 2
  • Linqing Zou
    • 2
  1. 1.Department of Anatomy and CytoneurobiologyMedical College of Soochow UniversitySuzhouChina
  2. 2.Department of Anatomy and Neurobiology, The Jiangsu Key Laboratory of NeuroregenerationNantong UniversityNantongChina

Personalised recommendations