Skip to main content
Log in

RNA processing is altered in skeletal muscle nuclei of patients affected by myotonic dystrophy

  • Short communication
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Myotonic dystrophies (DMs) are characterised by highly variable clinical manifestations consisting of muscle weakness and atrophy, and a wide spectrum of extramuscular manifestations. In both DM1 and DM2 forms, expanded nucleotide sequences cause the accumulation of mutant transcripts in the nucleus, thus deregulating the function of some RNA-binding proteins and providing a plausible explanation for the multifactorial phenotype of DM patients. However, at the skeletal muscle level, no mechanistic explanation for the muscle wasting has so far been proposed. We therefore performed a study in situ by immunoelectron microscopy on biceps brachii biopsies from DM1, DM2 and healthy subjects, providing the first ultrastructural evidence on the distribution of some nuclear ribonucleoprotein (RNP)-containing structures and molecular factors involved in pre-mRNA transcription and maturation in dystrophic myonuclei. Our results demonstrated an accumulation of splicing and cleavage factors in myonuclei of both DM1 and DM2 patients, suggesting an impairment of post-transcriptional pre-mRNA pathways. The transcription of the expanded sequences in DM myonuclei would therefore hamper functionality of the whole splicing machinery, slowing down the intranuclear molecular trafficking; this would reduce the capability of myonuclei to respond to anabolic stimuli thus contributing to muscle wasting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Bachinski LL, Udd B, Meola G, Sansone V, Bassez G, Eymard B, Thornton CA, Moxley RT, Harper PS, Rogers MT, Jurkat-Rott K, Lehmann-Horn F, Wieser T, Gamez J, Navarro C, Bottani A, Kohler A, Shriver MD, Sallinen R, Wessman M, Zhang S, Wright FA, Krahe R (2003) Confirmation of the type 2 myotonic dystrophy (CCTG)n expansion mutation in patients with proximal myotonic myopathy/proximal myotonic dystrophy of different European origins: a single shared haplotype indicates an ancestral founder effect. Am J Hum Gen 73:835–848

    Article  CAS  Google Scholar 

  • Bernhard W (1969) A new staining procedure for electron microscopic cytology. J Ultrastruct Res 27:250–265

    Article  PubMed  CAS  Google Scholar 

  • Biggiogera M, Fakan S (2008) Visualization of nuclear organization by ultrastructural cytochemistry. Methods Cell Biol 88:431–449

    Article  PubMed  CAS  Google Scholar 

  • Biggiogera M, Cisterna B, Spedito A, Vecchio L, Malatesta M (2008) Perichromatin fibrils as early markers of transcriptional alterations. Differentiation 76:57–65

    PubMed  CAS  Google Scholar 

  • Bigot A, Klein AF, Gasnier E, Jacquemin V, Ravassard P, Butler-Browne G, Mouly V, Furling D (2009) Large CTG repeats trigger p16-dependent premature senescence in myotonic dystrophy type 1 muscle precursor cells. Am J Pathol 174:1435–1442

    Article  PubMed  CAS  Google Scholar 

  • Bogolyubov D, Stepanova I, Parfenov V (2009) Universal nuclear domains of somatic and germ cells: some lessons from oocyte interchromatin granule cluster and Cajal body structure and molecular composition. Bioessays 31:400–409

    Article  PubMed  CAS  Google Scholar 

  • Botta A, Caldarola S, Vallo L, Bonifazi E, Fruci D, Gullotta F, Massa R, Novelli G, Loreni F (2006) Effect of the [CCTG]n repeat expansion on ZNF9 expression in myotonic dystrophy type II (DM2). Biochim Biophys Acta 1762:329–334

    PubMed  CAS  Google Scholar 

  • Brook JD, McCurrach ME, Harley HG, Buckler AJ, Church D, Aburatani H, Hunter K, Stanton VP, Thirion JP, Hudson T, Sohn R, Zemelman B, Snell RG, Rundle SA, Crow S, Davies J, Shelbourne P, Buxton J, Jones C, Juvonen V, Johnson K, Harper PS, Shaw DJ, Housman DE (1992) Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 69:385–387

    PubMed  CAS  Google Scholar 

  • Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinková E, Vandewoude M, Zamboni M, European Working Group on Sarcopenia in Older People (2010) Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 39:412–423

    Article  PubMed  Google Scholar 

  • Day JW, Ricker K, Jacobsen JF, Rasmussen LJ, Dick KA, Kress W, Schneider C, Koch MC, Beilman GJ, Harrison AR, Dalton JC, Ranum LP (2003) Myotonic dystrophy type 2: molecular, diagnostic and clinical spectrum. Neurology 60:657–664

    PubMed  CAS  Google Scholar 

  • Fakan S (2004) The functional architecture of the nucleus as analysed by ultrastructural cytochemistry. Histochem Cell Biol 122:83–93. doi:10.1007/s00418-004-0681-1

    Article  PubMed  CAS  Google Scholar 

  • Fardaei M, Rogers MT, Thorpe HM, Larkin K, Hamshere MG, Harper PS, Brook JD (2002) Three proteins, MBNL, MBLL and MBXL, co-localize in vivo with nuclear foci of expanded-repeat transcripts in DM1 and DM2 cells. Hum Mol Genet 11:805–814

    Article  PubMed  CAS  Google Scholar 

  • Fu YH, Pizzuti A, Fenwick RG Jr, King J, Rajnarayan S, Dunne PW, Dubel J, Nasser GA, Ashizawa T, de Jong P, Wieringa B, Korneluk R, Perryman MB, Epstein HF, Caskey CT (1992) An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science 255:1256–1258

    Article  PubMed  CAS  Google Scholar 

  • Giagnacovo M, Cardani R, Meola G, Pellicciari C, Malatesta M (2010) Routinely frozen biopsies of human skeletal muscle are suitable for morphological and immunocytochemical analyses at transmission electron microscopy. Eur J Histochem 54:e31

    PubMed  CAS  Google Scholar 

  • Harper PS (2001) Myotonic dystrophy, 3rd edn. WB Saunders, London

    Google Scholar 

  • Huichalaf C, Sakai K, Jin B, Jones K, Wang GL, Schoser B, Schneider-Gold C, Sarkar P, Pereira-Smith OM, Timchenko N, Timchenko L (2010) Expansion of CUG RNA repeats causes stress and inhibition of translation in myotonic dystrophy 1 (DM1) cells. FASEB J 24:3706–3719

    Article  PubMed  CAS  Google Scholar 

  • Jones RE, Okamura CS, Martin TE (1980) Immunofluorescent localization of the proteins of nuclear ribonucleoprotein complexes. J Cell Biol 86:235–243

    Article  PubMed  CAS  Google Scholar 

  • Kim W, Sharpless N (2006) The regulation of INK4/ARF in cancer and aging. Cell 127:265–275

    Article  PubMed  CAS  Google Scholar 

  • Kimura T, Nakamori M, Lueck JD, Pouliquin P, Aoike F, Fujimura H, Dirksen RT, Takahashi MP, Dulhunty AF, Sakoda S (2005) Altered mRNA splicing of the skeletal muscle ryanodine receptor and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase in myotonic dystrophy type 1. Hum Mol Genet 14:2189–2200

    Article  PubMed  CAS  Google Scholar 

  • Ladd AN, Charlet N, Cooper TA (2001) The CELF family of RNA binding proteins is implicated in cellspecific and developmentally regulated alternative splicing. Mol Cell Biol 21:1285–1296

    Article  PubMed  CAS  Google Scholar 

  • Liquori CL, Ricker K, Moseley ML, Jacobsen JF, Kress W, Naylor SL, Day JW, Ranum LP (2001) Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 293:864–867

    Article  PubMed  CAS  Google Scholar 

  • Lührmann R, Kastner B, Bach M (1990) Structure of spliceosomal snRNPs and their role in pre-mRNA splicing. Biochim Biophys Acta 1087:265–292

    PubMed  Google Scholar 

  • Madhani HD, Guthrie C (1994) Dynamic RNA-RNA interactions in the spliceosome. Annu Rev Genet 28:1–26

    Article  PubMed  CAS  Google Scholar 

  • Mahadevan M, Tsilfidis C, Sabourin L, Shutler G, Amemiya C, Jansen G, Neville C, Narang M, Barceló J, O’Hoy K, Leblond S, Earle-MacDonald J, de Jong PJ, Wieringa B, Korneluk RG (1992) Myotonic dystrophy mutation: an unstable CTG repeat in the 3′ untranslated region of the gene. Science 255:1253–1255

    Article  PubMed  CAS  Google Scholar 

  • Malatesta M, Meola G (2010) Structural and functional alterations of the cell nucleus in skeletal muscle wasting: the evidence in situ. Eur J Histochem 54:e44

    PubMed  CAS  Google Scholar 

  • Malatesta M, Baldelli B, Battistelli S, Fattoretti P, Bertoni-Freddari C (2005) Aging affects the distribution of the circadian CLOCK protein in rat hepatocytes. Microsc Res Tech 68:45–50

    Article  PubMed  CAS  Google Scholar 

  • Malatesta M, Fattoretti P, Baldelli B, Battistelli S, Balietti M, Bertoni-Freddari C (2007) Effects of ageing on the fine distribution of the circadian CLOCK protein in reticular formation neurons. Histochem Cell Biol 127:641–647

    Article  PubMed  CAS  Google Scholar 

  • Malatesta M, Perdoni F, Muller S, Zancanaro C, Pellicciari C (2009) Nuclei of aged myofibres undergo structural and functional changes suggesting impairment in RNA processing. Eur J Histochem 53:97–106

    PubMed  CAS  Google Scholar 

  • Malatesta M, Biggiogera M, Cisterna B, Balietti M, Bertoni-Freddari C, Fattoretti P (2010a) Perichromatin fibrils accumulation in hepatocyte nuclei reveals alterations of pre-mRNA processing during ageing. DNA Cell Biol 29:49–57

    Article  PubMed  CAS  Google Scholar 

  • Malatesta M, Perdoni F, Muller S, Pellicciari C, Zancanaro C (2010b) Pre-mRNA processing is partially impaired in satellite cell nuclei from aged muscles. J Biomed Biotechnol 2010:410405

    PubMed  Google Scholar 

  • Margolis JM, Schoser BG, Moseley ML, Day JW, Ranum LP (2006) DM2 intronic expansions: evidence for CCUG accumulation without flanking sequence or effects on ZNF9 mRNA processing or protein expression. Hum Mol Genet 15:1808–1815

    Article  PubMed  CAS  Google Scholar 

  • Meola G (2005) Advanced microscopic and histochemical techniques: diagnostic tools in the molecular era of myology. Eur J Histochem 49:93–96

    PubMed  CAS  Google Scholar 

  • Meola G, Moxley RT 3rd (2004) Myotonic dystrophy type 2 and related myotonic disorders. J Neurol 251:1173–1182

    Article  PubMed  Google Scholar 

  • Miller JW, Urbinati CR, Teng-Umnuay P, Stenberg MG, Byrne BJ, Thornton CA, Swanson MS (2000) Recruitment of human muscleblind proteins to (CUG)(n) expansions associated with myotonic dystrophy. EMBO J 19:4439–4448

    Article  PubMed  CAS  Google Scholar 

  • Mulders SAM, van den Broek WJAA, Wheeler TM, Croes HJE, van Kuik-Romeijn P, de Kimpe SJ, Furling D, Platenburg GJ, Gourdon G, Thornton CA, Wieringa B, Wansink DG (2009) Triplet-repeat oligonucleotide-mediated reversal of RNA toxicity in myotonic dystrophy. Proc Natl Acad Sci USA 106:13915–13920

    Article  PubMed  CAS  Google Scholar 

  • Osborne RJ, Thornton CA (2006) RNA-dominant diseases. Hum Mol Genet 15:R162–R169

    Article  PubMed  CAS  Google Scholar 

  • Perdoni F, Malatesta M, Cardani R, Giagnacovo M, Mancinelli E, Meola G, Pellicciari C (2009) RNA/MBNL1-containing foci in myoblast nuclei from patients affected by myotonic dystrophy type 2: an immunocytochemical study. Eur J Histochem 53:151–158

    PubMed  CAS  Google Scholar 

  • Puvion E, Puvion-Dutilleul F (1996) Ultrastructure of the nucleus in relation to transcription and splicing: roles of perichromatin fibrils and interchromatin granules. Exp Cell Res 229:217–225

    Article  PubMed  CAS  Google Scholar 

  • Ranum LP, Rasmussen PF, Benzow KA, Koob MD, Day JW (1998) Genetic mapping of a second myotonic dystrophy locus. Nat Genet 19:196–198

    Article  PubMed  CAS  Google Scholar 

  • Salisbury E, Sakai K, Schoser B, Huichalaf C, Schneider-Gold C, Nguyen H, Wang GL, Albrecht JH, Timchenko LT (2008) Ectopic expression of cyclin D3 corrects differentiation of DM1 myoblasts through activation of RNA CUG-binding protein, CUGBP1. Exp Cell Res 314:2266–2278

    Article  PubMed  CAS  Google Scholar 

  • Salisbury E, Schoser B, Schneider-Gold C, Wang GL, Huichalaf C, Jin B, Sirito M, Sarkar P, Krahe R, Timchenko NA, Timchenko LT (2009) Expression of RNA CCUG repeats dysregulates translation and degradation of proteins in myotonic dystrophy 2 patients. Am J Pathol 175:748–762

    Article  PubMed  CAS  Google Scholar 

  • Savkur RS, Philips AV, Cooper TA (2001) Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat Genet 29:40–47

    Article  PubMed  CAS  Google Scholar 

  • Savkur RS, Philips AV, Cooper TA, Dalton JC, Moseley ML, Ranum LP, Day JW (2004) Insulin receptor splicing alteration in myotonic dystrophy type 2. Am J Hum Genet 74:1309–1313

    Article  PubMed  CAS  Google Scholar 

  • Schoser B, Timchenko L (2010) Myotonic dystrophies 1 and 2: complex diseases with complex mechanisms. Curr Genomics 11:77–90

    Article  PubMed  CAS  Google Scholar 

  • Tews DS, Goebel HH (2005) Diagnostic immunohistochemistry in neuromuscular disorders. Histopathology 46:1–23

    Article  PubMed  CAS  Google Scholar 

  • Thompson LD (2009) Age-related muscle dysfunction. Exp Gerontol 44:106–111

    Article  PubMed  CAS  Google Scholar 

  • Timchenko NA, Iakova P, Cai ZJ, Smith JR, Timchenko LT (2001) Molecular basis for impaired muscle differentiation in myotonic dystrophy. Mol Cell Biol 21:6927–6938

    Article  PubMed  CAS  Google Scholar 

  • Timchenko NA, Patel R, Iakova P, Cai ZJ, Quan L, Timchenko LT (2004) Overexpression of CUG triplet repeat-binding protein, CUGBP1, in mice inhibits myogenesis. J Biol Chem 279:13129–13139

    Article  PubMed  CAS  Google Scholar 

  • Veraldi KL, Arhin GK, Martincic K, Chung-Ganster LH, Wilusz J, Milcarek C (2001) HnRNP F influences binding of a 64-kilodalton subunit of cleavage stimulation factor to mRNA precursors in mouse B cells. Mol Cell Biol 21:1228–1238

    Article  PubMed  CAS  Google Scholar 

  • Vihola A, Bassez G, Meola G, Zhang S, Haapasalo H, Paetau A, Mancinelli E, Rouche A, Hogrel JY, Laforêt P, Maisonobe T, Pellissier JF, Krahe R, Eymard B, Udd B (2003) Histopathological differences of myotonic dystrophy type 1 (DM1) and PROMM/DM2. Neurology 60:1854–1857

    PubMed  CAS  Google Scholar 

  • Wahle E, Rüegsegger U (1999) 3′-end processing of pre-mRNA in eukaryotes. FEMS Microbiol Rev 23:277–295

    PubMed  CAS  Google Scholar 

  • Warf MB, Nakamori M, Matthys CM, Thornton CA, Berglund JA (2009) Pentamidine reverses the splicing defects associated with myotonic dystrophy. Proc Natl Acad Sci USA 106:18551–18556

    Article  PubMed  CAS  Google Scholar 

  • Wheeler TM, Thornton CA (2007) Myotonic dystrophy: RNA-mediated muscle disease. Curr Opin Neurol 20:572–576

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We express our gratitude to Prof. T.E. Martin for kindly providing us with the anti-hnRNP core protein antibody. Marzia Giagnacovo is a PhD student in receipt of a fellowship from the Dottorato di Ricerca in Biologia Cellulare (University of Pavia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Pellicciari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malatesta, M., Giagnacovo, M., Cardani, R. et al. RNA processing is altered in skeletal muscle nuclei of patients affected by myotonic dystrophy. Histochem Cell Biol 135, 419–425 (2011). https://doi.org/10.1007/s00418-011-0797-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-011-0797-z

Keywords

Navigation