Skip to main content

Advertisement

Log in

HSPA1A is upregulated in periodontal ligament at early stage of tooth movement in rats

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Heat shock proteins (HSPs) are molecular chaperones that maintain intracellular protein homeostasis and ensure survival of cells. Continuous orthodontic force on the tooth is considered to be a type of physical stress loaded to the periodontal ligament (PDL). However, little is known about the role of HSPs during tooth movement. This study was performed to examine the expression of HSPs in the PDL during tooth movement using laser microdissection, microarray analysis, real-time RT-PCR and immunohistochemistry. Gene expression of HSPA1A in the pressure zone of the PDL was higher during 6 h of tooth movement than in the control group. Expression of HSPA1A decreased with time. HSPA1A was also detected in the pressure zone of the PDL at the protein level 24 h after the initial tissue change. These results strongly suggest that expression of HSPA1A in the PDL during early stages of tooth movement is a critical factor for tissue reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE et al (2002) Novel signal transduction pathway utilized by extracellular HSP70:role of toll-like receptor (TLR)2 and TLR4. J Biol Chem 277:15028–15034

    Article  CAS  PubMed  Google Scholar 

  • Azuma M (1970) Study on histologic changes of periodontal membrane incident to experimental tooth movement. Bull Tokyo Med Dent Univ 17:149–178

    CAS  PubMed  Google Scholar 

  • Beere HM, Wolf BB, Cain K, Mosser DD, Mahboubi A, Kuwana T et al (2000) Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2:469–475

    Article  CAS  PubMed  Google Scholar 

  • Cotto JJ, Morimoto RI (1999) Stress-induced activation of the heat-shock response: cell and molecular biology of heat-shock factors. Biochem Soc Symp 64:105–118

    CAS  PubMed  Google Scholar 

  • Giffard GR, Han R, Emery FJ, Duan M, Pittet FJ (2008) Regulation of apoptotic inflammatory cell signaling in cerebral ischemia-the complex roles of Heat Shock Protein 70. Anethesiology 109(2):339–348

    Article  CAS  Google Scholar 

  • Hatai T, Yokozeki M, Funato N, Baba Y, Moriyama K, Ichijo H et al (2001) Apoptosis of periodontal ligament cells induced by mechanical stress during tooth movement. Oral Dis 7(5):287–290

    Article  CAS  PubMed  Google Scholar 

  • Huang WJ, Xia LM, Zhu F, Huang B, Zhou C, Zhu HF et al (2009) Transcriptional upregulation of HSP70-2 by HIF-1 in cancer cells in response to hypoxia. Int J Cancer 124(2):298–305

    Article  CAS  PubMed  Google Scholar 

  • Kawamoto T, Shimizu M (1986) A method for preparing entire body sections suitable for autoradiographic, histological and histochemical studies. Stain Technol 61:169–183

    CAS  PubMed  Google Scholar 

  • Krishnan V, Davidovitch Z (2006) Cellular, molecular, and tissue-level reactions to orthodontic force. Am J Orthod Dentofacial Orthop 129:469e.1–469e.32

    Article  Google Scholar 

  • Kvam E (1969) A study of the cell-free zone following experimental tooth movement in the rat. Trans Eur Orthod Soc 419–434

  • Lehner T, Wang Y, Whittall T, McGowan E, Kelly CG, Singh M (2004) Function domains of HSP70 stimulate generation of cytokines and chemokines, maturation of dendritic cells and adjuvanticity. Biochem Soc Trans 32:629–632

    Article  CAS  PubMed  Google Scholar 

  • Leu JIJ, Pimkina J, Frank A, Murphy ME, George DL (2009) A small molecule inhibitor of inducible heat shock protein 70 (HSP70). Mol Cell 36:15–27

    Article  CAS  PubMed  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677

    Article  CAS  PubMed  Google Scholar 

  • Macapanpan LC, Weinmann JP, Broodie AG (1954) Early tissue changes following tooth movement in rats. Angle Orthod 24:79–95

    Google Scholar 

  • Morimoto RI, Kline MP, Bimston DN, Cotto JJ (1997) The heat-shock response: regulation and function of heat-shock proteins and molecular chaperones. Essays Biochem 32:17–29

    CAS  PubMed  Google Scholar 

  • Nakamura Y, Tanaka T, Kuwahara Y (1996) New findings in the degenerating tissues of the periodontal ligament during tooth movement. Am J Orthod Dentofacial Orthop 109:348–354

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Tanaka T, Noda K, Shimpo S, Oikawa T, Hirashita A et al (2003) Calcification of degenerating tissues in the periodontal ligament during tooth movement. J Periodont Res 38:343–350

    Article  PubMed  Google Scholar 

  • Nakamura Y, Nomura Y, Arai C, Noda K, Oikawa T, Kogure K et al (2007) Laser capture microdissection of rat periodontal ligament for gene analysis. Biotech Histochem 82(6):295–300

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Noda K, Shimoda S, Oikawa T, Arai C, Nomura Y et al (2008) Time-lapse observation of rat periodontal ligament during function and tooth movement, using microcomputed tomography. Eur J Orthod 30:320–326

    Article  PubMed  Google Scholar 

  • Reitan K (1960) Tissue behavior during orthodontic tooth movement. Am J Orthod 46:881–900

    Article  Google Scholar 

  • Rygh P (1972) Ultrastructure vascular changes in pressure zone of rat molar periodontium incident to orthodontic movement. Scand J Dent Res 80:307–321

    CAS  PubMed  Google Scholar 

  • Rygh P (1974) Elimination of hyalinized periodontal tissues associated with orthodontic tooth movement. Scand J Dent Res 82:57–73

    CAS  PubMed  Google Scholar 

  • Saito M, Saito S, Ngan PW, Shanfeld J, Davidovitch Z (1991) Interleukin 1 beta and prostaglandin E are involved in the response of periodontal cells to mechanical stress in vivo and in vitro. Am J Orthod Dentofacial Orthop 99(3):226–240

    Article  CAS  PubMed  Google Scholar 

  • Saleh A, Srinivasula SM, Balkir L, Robbins PD, Alnemri ES (2000) Negative regulation of the Apaf-1 apoptosome by Hsp70. Nat Cell Biol 2:476–483

    Article  CAS  PubMed  Google Scholar 

  • Snoeckx HL, Cornelussen RN, Nieuwenhoven FA, Reneman RS, Vusse GJ (2001) Heat shock proteins and cardiovascular pathophysiology. Physiol Rev 81(4):1461–1497

    CAS  PubMed  Google Scholar 

  • Svensson PA, Asea A, Englund MC, Bausero MA, Jernas M, Wiklund O et al (2006) Major role of HSP70 as aparacrine inducer of cytokine production human oxidized LDL treated macrophages. Atherosclerosis 185:32–38

    Article  CAS  PubMed  Google Scholar 

  • Tavaria M, Gabriele T, Kola I, Anderson RL (1996) A hitchhiker’s guide to the human Hsp70 family. Cell Stress Chaperones 1:23–28

    Article  CAS  PubMed  Google Scholar 

  • Vabulas RM, Ahmad-Nejad P, Ghose S, Kirschning CJ, Issels RD, Wagner H (2002) Hsp70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J Biol Chem 277:15107–15112

    Article  CAS  PubMed  Google Scholar 

  • Van Molle W, Wielockx B, Mahieu T, Takada M, Taniguchi T, Sekikawa K et al (2002) HSP70 protects against TNF-induced lethal inflammatory shock. Immunity 16:685–695

    Article  PubMed  Google Scholar 

  • Vandevska-Radunovic V, Kristansen AB, Heyeraas KJ, Kvinnsland S (1994) Changes in blood circulation in teeth and supporting tissues incident to experimental tooth movement. Eur J Orthod 16:361–369

    CAS  PubMed  Google Scholar 

  • Welch WJ (1992) Mammalian stress response: cell physiology, structure/function of stress proteins, and implications for medicine and disease. Physiol Rev 72:1063–1081

    CAS  PubMed  Google Scholar 

  • Zheng Z, Kim JY, Ma H, Lee JE, Yenari MA (2007) Anti-inflammatory effects of the 70 kDa heat shock protein in experimental stroke. J Cereb Blood Flow Metab 28:53–63

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Part of this study was supported by a grant-in-aid for Scientific Research (C) (17592153) from the Ministry of Education, Science, Sports, and Culture of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chihiro Arai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arai, C., Nomura, Y., Ishikawa, M. et al. HSPA1A is upregulated in periodontal ligament at early stage of tooth movement in rats. Histochem Cell Biol 134, 337–343 (2010). https://doi.org/10.1007/s00418-010-0737-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-010-0737-3

Keywords

Navigation