Skip to main content
Log in

Spatial and temporal expression pattern of germ layer markers during human embryonic stem cell differentiation in embryoid bodies

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Human embryonic stem cell (hESC) differentiation in embryoid bodies (EBs) provides a valuable tool to study the interplay of different germ layers and their influence on cell differentiation. The gene expression of the developing EBs has been shown in many studies, but the protein expression and the spatial composition of different germ layers in human EBs have not been systematically studied. The aim of the present work was to study the temporal and spatial organisation of germ layers based on the expression of mesoderm (Brachyury T), endoderm (AFP) and ectoderm (SOX1) markers during the early stages of differentiation in eight hESC lines. Tissue multi-array technology was applied to study the protein expression of a large number of EBs. According to our results, EB formation and the organisation of germ layers occurred in a similar manner in all the lines. During 12 days of differentiation, all the germ layer markers were present, but no obvious distinct trajectories were formed. However, older EBs were highly organised in structure. Pluripotency marker OCT3/4 expression persisted unexpectedly long in the differentiating EBs. Cavity formation was observed in the immunocytological sections, and caspase-3 expression was high, suggesting a role of apoptosis in hESC differentiation and/or EB formation. The expression of Brachyury T was notably low in all the lines, also those with the best cardiac differentiation capacity, while the expression of SOX1 was higher in some lines, suggesting that the neural differentiation propensity may be detectable already in the early stages of EB differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adewumi O, Aflatoonian B, Ahrlund-Richter L, Amit M, Andrews PW, Beighton G, Bello PA, Benvenisty N, Berry LS, Bevan S, Blum B, Brooking J, Chen KG, Choo AB, Churchill GA, Corbel M, Damjanov I, Draper JS, Dvorak P, Emanuelsson K, Fleck RA, Ford A, Gertow K, Gertsenstein M, Gokhale PJ, Hamilton RS, Hampl A, Healy LE, Hovatta O, Hyllner J, Imreh MP, Itskovitz-Eldor J, Jackson J, Johnson JL, Jones M, Kee K, King BL, Knowles BB, Lako M, Lebrin F, Mallon BS, Manning D, Mayshar Y, McKay RD, Michalska AE, Mikkola M, Mileikovsky M, Minger SL, Moore HD, Mummery CL, Nagy A, Nakatsuji N, O’Brien CM, Oh SK, Olsson C, Otonkoski T, Park KY, Passier R, Patel H, Patel M, Pedersen R, Pera MF, Piekarczyk MS, Pera RA, Reubinoff BE, Robins AJ, Rossant J, Rugg-Gunn P, Schulz TC, Semb H, Sherrer ES, Siemen H, Stacey GN, Stojkovic M, Suemori H, Szatkiewicz J, Turetsky T, Tuuri T, van den Brink S, Vintersten K, Vuoristo S, Ward D, Weaver TA, Young LA, Zhang W (2007) Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat Biotechnol 25:803–816

    Google Scholar 

  • Amit M, Carpenter MK, Inokuma MS, Chiu CP, Harris CP, Waknitz MA, Itskovitz-Eldor J, Thomson JA (2000) Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 227:271–278

    Article  CAS  PubMed  Google Scholar 

  • Bauwens CL, Peerani R, Niebruegge S, Woodhouse KA, Kumacheva E, Husain M, Zandstra PW (2008) Control of human embryonic stem cell colony and aggregate size heterogeneity influences differentiation trajectories. Stem Cells 26:2300–2310

    Article  PubMed  Google Scholar 

  • Beqqali A, Kloots J, Ward-van Oostwaard D, Mummery C, Passier R (2006) Genome-wide transcriptional profiling of human embryonic stem cells differentiating to cardiomyocytes. Stem Cells 24(8):1956–1967

    Google Scholar 

  • Bettiol E, Sartiani L, Chicha L, Krause KH, Cerbai E, Jaconi ME (2007) Fetal bovine serum enables cardiac differentiation of human embryonic stem cells. Differentiation 75:669–681

    Article  CAS  PubMed  Google Scholar 

  • Burridge PW, Anderson D, Priddle H, Barbadillo Munoz MD, Chamberlain S, Allegrucci C, Young LE, Denning C (2007) Improved human embryonic stem cell embryoid body homogeneity and cardiomyocyte differentiation from a novel V-96 plate aggregation system highlights interline variability. Stem Cells 25:929–938

    Article  CAS  PubMed  Google Scholar 

  • Cao F, Wagner RA, Wilson KD, Xie X, Fu JD, Drukker M, Lee A, Li RA, Gambhir SS, Weissman IL, Robbins RC, Wu JC (2008) Transcriptional and functional profiling of human embryonic stem cell-derived cardiomyocytes. PLoS One 3:e3474

    Article  PubMed  Google Scholar 

  • Conley BJ, Trounson AO, Mollard R (2004) Human embryonic stem cells form embryoid bodies containing visceral endoderm-like derivatives. Fetal Diagn Ther 19:218–223

    Article  PubMed  Google Scholar 

  • Dvash T, Mayshar Y, Darr H, McElhaney M, Barker D, Yanuka O, Kotkow KJ, Rubin LL, Benvenisty N, Eiges R (2004) Temporal gene expression during differentiation of human embryonic stem cells and embryoid bodies. Hum Reprod 19:2875–2883

    Article  CAS  PubMed  Google Scholar 

  • Fujita J, Crane AM, Souza MK, Dejosez M, Kyba M, Flavell RA, Thomson JA, Zwaka TP (2008) Caspase activity mediates the differentiation of embryonic stem cells. Cell Stem Cell 2:595–601

    Article  CAS  PubMed  Google Scholar 

  • Graichen R, Xu X, Braam SR, Balakrishnan T, Norfiza S, Sieh S, Soo SY, Tham SC, Mummery C, Colman A, Zweigerdt R, Davidson BP (2008) Enhanced cardiomyogenesis of human embryonic stem cells by a small molecular inhibitor of p38 MAPK. Differentiation 76:357–370

    Article  CAS  PubMed  Google Scholar 

  • Hoffman LM, Carpenter MK (2005) Characterization and culture of human embryonic stem cells. Nat Biotechnol 23:699–708

    Article  CAS  PubMed  Google Scholar 

  • Hsiao EC, Yoshinaga Y, Nguyen TD, Musone SL, Kim JE, Swinton P, Espineda I, Manalac C, deJong PJ, Conklin BR (2008) Marking embryonic stem cells with a 2A self-cleaving peptide: a NKX2-5 emerald GFP BAC reporter. PLoS One 3:e2532

    Article  PubMed  Google Scholar 

  • Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O, Amit M, Soreq H, Benvenisty N (2000) Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med 6:88–95

    CAS  PubMed  Google Scholar 

  • Jacobson MD, Weil M, Raff MC (1997) Programmed cell death in animal development. Cell 88:347–354

    Article  CAS  PubMed  Google Scholar 

  • Joza N, Susin SA, Daugas E, Stanford WL, Cho SK, Li CY, Sasaki T, Elia AJ, Cheng HY, Ravagnan L, Ferri KF, Zamzami N, Wakeham A, Hakem R, Yoshida H, Kong YY, Mak TW, Zuniga-Pflucker JC, Kroemer G, Penninger JM (2001) Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410:549–554

    Article  CAS  PubMed  Google Scholar 

  • Kehat I, Kenyagin-Karsenti D, Snir M, Segev H, Amit M, Gepstein A, Livne E, Binah O, Itskovitz-Eldor J, Gepstein L (2001) Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 108:407–414

    CAS  PubMed  Google Scholar 

  • Keller GM (1995) In vitro differentiation of embryonic stem cells. Curr Opin Cell Biol 7:862–869

    Article  CAS  PubMed  Google Scholar 

  • Kim SE, Kim BK, Gil JE, Kim SK, Kim JH (2007) Comparative analysis of the developmental competence of three human embryonic stem cell lines in vitro. Mol Cells 23:49–56

    CAS  PubMed  Google Scholar 

  • Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, Reinecke H, Xu C, Hassanipour M, Police S, O’Sullivan C, Collins L, Chen Y, Minami E, Gill EA, Ueno S, Yuan C, Gold J, Murry CE (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25:1015–1024

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lough J, Sugi Y (2000) Endoderm and heart development. Dev Dyn 217:327–342

    Article  CAS  PubMed  Google Scholar 

  • Messina E, De Angelis L, Frati G, Morrone S, Chimenti S, Fiordaliso F, Salio M, Battaglia M, Latronico MVG, Coletta M, Vivarelli E, Frati L, Cossu G, Giacomello A (2004) Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 95:911–921

    Article  CAS  PubMed  Google Scholar 

  • Mohr JC, Zhang J, Azarin SM, Soerens AG, de Pablo JJ, Thomson JA, Lyons GE, Palecek SP, Kamp TJ (2010) The microwell control of embryoid body size in order to regulate cardiac differentiation of human embryonic stem cells. Biomaterials 31:1885–1893

    Article  CAS  PubMed  Google Scholar 

  • Mummery C, Ward-van Oostwaard D, Doevendans P, Spijker R, van den Brink S, Hassink R, van der Heyden M, Opthof T, Pera M, de la Riviere AB, Passier R, Tertoolen L (2003) Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 107:2733–2740

    Article  CAS  PubMed  Google Scholar 

  • Niebruegge S, Bauwens CL, Peerani R, Thavandiran N, Masse S, Sevaptisidis E, Nanthakumar K, Woodhouse K, Husain M, Kumacheva E, Zandstra PW (2009) Generation of human embryonic stem cell-derived mesoderm and cardiac cells using size-specified aggregates in an oxygen-controlled bioreactor. Biotechnol Bioeng 102:493–507

    Article  CAS  PubMed  Google Scholar 

  • Niwa H, Miyazaki J, Smith AG (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24:372–376

    Article  CAS  PubMed  Google Scholar 

  • Osafune K, Caron L, Borowiak M, Martinez RJ, Fitz-Gerald CS, Sato Y, Cowan CA, Chien KR, Melton DA (2008) Marked differences in differentiation propensity among human embryonic stem cell lines. Nat Biotechnol 26:313–315

    Article  CAS  PubMed  Google Scholar 

  • Pal R, Totey SS, Mamidi MK, Bhat V, Totey SM (2009) Propensity of human embryonic stem cell lines during early stage of lineage specification control their terminal differentiation into mature cell types. Exp Biol Med 234(10):1230–1243

    Google Scholar 

  • Palmieri SL, Peter W, Hess H, Scholer HR (1994) Oct-4 transcription factor is differentially expressed in the mouse embryo during establishment of the first two extraembryonic cell lineages involved in implantation. Dev Biol 166:259–267

    Article  CAS  PubMed  Google Scholar 

  • Parvinen M, Pelto-Huikko M, Soder O, Schultz R, Kaipia A, Mali P, Toppari J, Hakovirta H, Lonnerberg P, Ritzen EM (1992) Expression of beta-nerve growth factor and its receptor in rat seminiferous epithelium: specific function at the onset of meiosis. J Cell Biol 117:629–641

    Article  CAS  PubMed  Google Scholar 

  • Passier R, Oostwaard DW, Snapper J, Kloots J, Hassink RJ, Kuijk E, Roelen B, de la Riviere AB, Mummery C (2005) Increased cardiomyocyte differentiation from human embryonic stem cells in serum-free cultures. Stem Cells 23:772–780

    Article  CAS  PubMed  Google Scholar 

  • Pekkanen-Mattila M, Kerkela E, Tanskanen JM, Pietila M, Pelto-Huikko M, Hyttinen J, Skottman H, Suuronen R, Aalto-Setala K (2009) Substantial variation in the cardiac differentiation of human embryonic stem cell lines derived and propagated under the same conditions—a comparison of multiple cell lines. Ann Med 41:360–370

    Article  CAS  PubMed  Google Scholar 

  • Pera MF, Trounson AO (2004) Human embryonic stem cells: prospects for development. Development 131:5515–5525

    Article  CAS  PubMed  Google Scholar 

  • Sachlos E, Auguste DT (2008) Embryoid body morphology influences diffusive transport of inductive biochemicals: a strategy for stem cell differentiation. Biomaterials 29:4471–4480

    Article  CAS  PubMed  Google Scholar 

  • Synnergren J, Adak S, Englund MCO, Giesler TL, Noaksson K, Lindahl A, Nilsson P, Nelson D, Abbot S, Olsson B, Sartipy P (2008) Cardiomyogenic gene expression profiling of differentiating human embryonic stem cells. J Biotechnol 134:162–170

    Article  CAS  PubMed  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Police S, Rao N, Carpenter MK (2002) Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ Res 91:501–508

    Article  CAS  PubMed  Google Scholar 

  • Xu XQ, Graichen R, Soo SY, Balakrishnan T, Rahmat SN, Sieh S, Tham SC, Freund C, Moore J, Mummery C, Colman A, Zweigerdt R, Davidson BP (2008) Chemically defined medium supporting cardiomyocyte differentiation of human embryonic stem cells. Differentiation 76:958–970

    CAS  PubMed  Google Scholar 

  • Yang L, Soonpaa MH, Adler ED, Roepke TK, Kattman SJ, Kennedy M, Henckaerts E, Bonham K, Abbott GW, Linden RM, Field LJ, Keller GM (2008) Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 453:524–528

    Article  CAS  PubMed  Google Scholar 

  • Yirme G, Amit M, Laevsky I, Osenberg S, Itskovitz-Eldor J (2008) Establishing a dynamic process for the formation, propagation, and differentiation of human embryoid bodies. Stem Cells Dev 17:1227–1241

    Article  CAS  PubMed  Google Scholar 

  • Zandstra PW, Bauwens C, Yin T, Liu Q, Schiller H, Zweigerdt R, Pasumarthi KB, Field LJ (2003) Scalable production of embryonic stem cell-derived cardiomyocytes. Tissue Eng 9:767–778

    Article  CAS  PubMed  Google Scholar 

  • Zeineddine D, Papadimou E, Chebli K, Gineste M, Liu J, Grey C, Thurig S, Behfar A, Wallace VA, Skerjanc IS, Puceat M (2006) Oct-3/4 dose dependently regulates specification of embryonic stem cells toward a cardiac lineage and early heart development. Dev Cell 11:535–546

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Wilson GF, Soerens AG, Koonce CH, Yu J, Palecek SP, Thomson JA, Kamp TJ (2009) Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res 104:e30–e41

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the heart team and the hESC maintenance laboratory of Regea. We are grateful for the technical assistance of Ulla Jukarainen in immunocytochemistry. We thank Prof. Outi Hovatta for the HS lines. The study was funded by the Academy of Finland, the Finnish Heart Research Foundation, the Finnish Cultural Foundation, the Competitive Research Funding of Pirkanmaa Hospital District, the Kalle Kaihari Foundation and the Ida Montin Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erja Kerkelä.

Electronic supplementary material

Below is the link to the electronic supplementary material.

418_2010_689_MOESM1_ESM.pdf

Supplementary Fig. 1. A tissue multi-array was prepared by punching 1 mm holes in 10% agarose. EBs were individually transferred to the wells filled with OCT compound, i.e. each hole contains replicates for individual samples from different hESC lines at different time points (PDF 238 kb)

418_2010_689_MOESM2_ESM.pdf

Supplementary Fig. 2. Average morphological changes and growth of EBs at the age of 1–20 days from four hESC lines. Scale bar 200 μm (PDF 623 kb)

418_2010_689_MOESM3_ESM.pdf

Supplementary Fig. 3. OCT3/4 shown to be strongly expressed at the protein level in undifferentiated hESC colonies (A). Infrequently single Brachyury T positive cells were seen (B), but the expression of SOX1 or AFP was never detected (C, D). Corresponding 4′,6-diamidino-2-phenylindole (DAPI) stainings (EH). Scale bar 200 μm (PDF 301 kb)

418_2010_689_MOESM4_ESM.pdf

Supplementary Fig. 4. OCT3/4 protein expression in EBs from hESC lines HS181 and HS346. The expression of OCT3/4 is still quite high on day 4 and can be detected both in the middle of EBs and on the edges (A, B). A strongly OCT3/4 positive area in one 6-day-old EB from line HS181 (C) and more typical expression pattern in EB from HS346 (D). In general, the expression of OCT3/4 started to decrease from day 8 (E, G), although was still quite abundant in some EBs on day 8 (F) and day 10 (H). The site of inset is marked with black box showing the stained cells except in G, where no immunoreactivity was seen. Cavity formation is marked with asterisks in D. Scale bar 50 μm (PDF 289 kb)

418_2010_689_MOESM5_ESM.pdf

Supplementary Fig. 5. Beating aggregate consisting mainly of cardiomyocytes as almost all the cells stained positively with cardiac troponin T (A). Clear striated patterns in the cells can be seen in the inset (B) (arrows). Scale bar 50 μm (PDF 62.3 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pekkanen-Mattila, M., Pelto-Huikko, M., Kujala, V. et al. Spatial and temporal expression pattern of germ layer markers during human embryonic stem cell differentiation in embryoid bodies. Histochem Cell Biol 133, 595–606 (2010). https://doi.org/10.1007/s00418-010-0689-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-010-0689-7

Keywords

Navigation