Skip to main content
Log in

Developmental regulation of TRPC3 ion channel expression in the mouse cochlea

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Canonical transient receptor potential type 3 (TRPC3) ion channels assemble from TRPC3 subunits and exhibit multiple activation mechanisms. TRPC3 has been proposed to contribute to Ca2+ entry supporting Ca2+ homeostasis in cochlear hair cells and to be activated by G protein-coupled receptor (GPCR) signaling in spiral ganglion neurons. The present study was designed to determine the spatiotemporal profile of TRPC3 expression during mouse cochlear ontogeny. TRPC3 immunofluorescence of cryosectioned cochleae was performed using E16–adult tissue. We found that prior to birth, TRPC3 expression was strongest in epithelial cells that form the cochlear partition. In the early postnatal period, to the onset of hearing (~P12), immunofluorescence was strongest in the hair cells, with increased expression in stria vascularis and Reissner’s membrane. Afferent neurite labeling in inner spiral plexus and outer spiral bundles developed transiently in the perinatal period, corresponding to the critical period of synaptic consolidation, while signal in the spiral ganglion soma increased from the perinatal period through to adulthood. Compared with the late embryonic/early postnatal levels, hair cell expression was relatively weaker from the third postnatal week, whereas spiral ganglion soma labeling was stronger. In the adult, TRPC3 expression was primarily in the soma of spiral ganglion neurons, the hair cells, and the inner and outer sulcus regions. This spatiotemporal profile of TRPC3 expression was consistent with this ion channel contributing to development of sensory, neural and epithelial cochlear tissues, as well as hair cell Ca2+ homeostasis and regulation of auditory neurotransmission via GPCR signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Asai Y, Holt JR, Geleoc GS (2010) A quantitative analysis of the spatiotemporal pattern of transient receptor potential gene expression in the developing mouse cochlea. J Assoc Res Otolaryngol 11:27–37

    Article  PubMed  Google Scholar 

  • Beutner D, Moser T (2001) The presynaptic function of mouse cochlear inner hair cells during development of hearing. J Neurosci 21:4593–4599

    CAS  PubMed  Google Scholar 

  • Birnbaumer L (2009) The TRPC class of ion channels: a critical review of their roles in slow, sustained increases in intracellular Ca2+ concentrations. Annu Rev Pharmacol Toxicol 49:395–426

    Article  CAS  PubMed  Google Scholar 

  • Birnbaumer L, Yildirim E, Abramowitz J (2003) A comparison of the genes coding for canonical TRP channels and their M, V and P relatives. Cell Calcium 33:419–432

    Article  CAS  PubMed  Google Scholar 

  • Cuajungco MP, Grimm C, Heller S (2007) TRP channels as candidates for hearing and balance abnormalities in vertebrates. Biochim Biophys Acta 1772:1022–1027

    CAS  PubMed  Google Scholar 

  • Damann N, Voets T, Nilius B (2008) TRPs in our senses. Curr Biol 18:R880–R889

    Article  CAS  PubMed  Google Scholar 

  • DeHaven WI, Jones BF, Petranka JG, Smyth JT, Tomita T, Bird GS, Putney JW Jr (2009) TRPC channels function independently of STIM1 and Orai1. J Physiol 587(10): 2275–2298

    Google Scholar 

  • Dulon D, Jagger DJ, Lin X, Davis RL (2006) Neuromodulation in the spiral ganglion: shaping signals from the organ of corti to the CNS. J Membr Biol 209:167–175

    Article  CAS  PubMed  Google Scholar 

  • Farinas I, Jones KR, Tessarollo L, Vigers AJ, Huang E, Kirstein M, de Caprona DC, Coppola V, Backus C, Reichardt LF, Fritzsch B (2001) Spatial shaping of cochlear innervation by temporally regulated neurotrophin expression. J Neurosci 21:6170–6180

    CAS  PubMed  Google Scholar 

  • Friedman RA, Van Laer L, Huentelman MJ, Sheth SS, Van Eyken E, Corneveaux JJ, Tembe WD, Halperin RF, Thorburn AQ, Thys S, Bonneux S, Fransen E, Huyghe J, Pyykko I, Cremers CW, Kremer H, Dhooge I, Stephens D, Orzan E, Pfister M, Bille M, Parving A, Sorri M, Van de Heyning PH, Makmura L, Ohmen JD, Linthicum FH Jr, Fayad JN, Pearson JV, Craig DW, Stephan DA, Van Camp G (2009) GRM7 variants confer susceptibility to age-related hearing impairment. Hum Mol Genet 18:785–796

    Article  CAS  PubMed  Google Scholar 

  • Greenwood D, Jagger DJ, Huang LC, Hoya N, Thorne PR, Wildman SS, King BF, Pak K, Ryan AF, Housley GD (2007) P2X receptor signaling inhibits BDNF-mediated spiral ganglion neuron development in the neonatal rat cochlea. Development 134:1407–1417

    Article  CAS  PubMed  Google Scholar 

  • Hartmann J, Dragicevic E, Adelsberger H, Henning HA, Sumser M, Abramowitz J, Blum R, Dietrich A, Freichel M, Flockerzi V, Birnbaumer L, Konnerth A (2008) TRPC3 channels are required for synaptic transmission and motor coordination. Neuron 59:392–398

    Article  CAS  PubMed  Google Scholar 

  • Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G (1999) Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397:259–263

    Article  CAS  PubMed  Google Scholar 

  • Hofmann T, Schaefer M, Schultz G, Gudermann T (2002) Subunit composition of mammalian transient receptor potential channels in living cells. PNAS (USA) 99:7461–7466

    Article  CAS  Google Scholar 

  • Huang LC, Thorne PR, Housley GD, Montgomery JM (2007a) Spatiotemporal definition of neurite outgrowth, refinement and retraction in the developing mouse cochlea. Development 134:2925–2933

    Article  CAS  PubMed  Google Scholar 

  • Huang WC, Young JS, Glitsch MD (2007b) Changes in TRPC channel expression during postnatal development of cerebellar neurons. Cell Calcium 42:1–10

    Article  CAS  PubMed  Google Scholar 

  • Ito K, Dulon D (2002) Nonselective cation conductance activated by muscarinic and purinergic receptors in rat spiral ganglion neurons. Am J Physiol Cell Physiol 282:C1121–C1135

    CAS  PubMed  Google Scholar 

  • Ito K, Rome C, Bouleau Y, Dulon D (2002) Substance P mobilizes intracellular calcium and activates a nonselective cation conductance in rat spiral ganglion neurons. Eur J Neurosci 16:2095–2102

    Article  PubMed  Google Scholar 

  • Jia Y, Zhou J, Tai Y, Wang Y (2007) TRPC channels promote cerebellar granule neuron survival. Nat Neurosci 10:559–567

    Article  CAS  PubMed  Google Scholar 

  • Kakehata S, Nakagawa T, Takasaka T, Akaike N (1993) Cellular mechanism of acetylcholine-induced response in dissociated outer hair cells of guinea-pig cochlea. J Physiol 463:227–244

    CAS  PubMed  Google Scholar 

  • Kwan KY, Allchorne AJ, Vollrath MA, Christensen AP, Zhang DS, Woolf CJ, Corey DP (2006) TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 50:277–289

    Article  CAS  PubMed  Google Scholar 

  • Levic S, Nie L, Tuteja D, Harvey M, Sokolowski BH, Yamoah EN (2007) Development and regeneration of hair cells share common functional features. PNAS (USA) 104:19108–19113

    Article  CAS  Google Scholar 

  • Li HS, Xu XZ, Montell C (1999) Activation of a TRPC3-dependent cation current through the neurotrophin BDNF. Neuron 24:261–273

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Jia YC, Cui K, Li N, Zheng ZY, Wang YZ, Yuan XB (2005) Essential role of TRPC channels in the guidance of nerve growth cones by brain-derived neurotrophic factor. Nature 434:894–898

    Article  CAS  PubMed  Google Scholar 

  • Mammano F, Frolenkov GI, Lagostena L, Belyantseva IA, Kurc M, Dodane V, Colavita A, Kachar B (1999) ATP-induced Ca(2+) release in cochlear outer hair cells: localization of an inositol triphosphate-gated Ca2+ store to the base of the sensory hair bundle. J Neurosci 19:6918–6929

    CAS  PubMed  Google Scholar 

  • Marcotti W, Johnson SL, Holley MC, Kros CJ (2003) Developmental changes in the expression of potassium currents of embryonic, neonatal and mature mouse inner hair cells. J Physiol 548:383–400

    Article  CAS  PubMed  Google Scholar 

  • Montell C, Birnbaumer L, Flockerzi V (2002) The TRP channels, a remarkably functional family. Cell 108:595–598

    Article  CAS  PubMed  Google Scholar 

  • Mori Y, Takada N, Okada T, Wakamori M, Imoto K, Wanifuchi H, Oka H, Oba A, Ikenaka K, Kurosaki T (1998) Differential distribution of TRP Ca2+ channel isoforms in mouse brain. Neuroreport 9:507–515

    CAS  PubMed  Google Scholar 

  • Ohlemiller KK, Gagnon MP (2004) Cellular correlates of progressive hearing loss in 129S6/SvEv mice. J Comp Neurol 469:377–390

    Article  PubMed  Google Scholar 

  • Petersen CC, Berridge MJ, Borgese MF, Bennett DL (1995) Putative capacitative calcium entry channels: expression of Drosophila trp and evidence for the existence of vertebrate homologues. Biochem J 311:41–44

    CAS  PubMed  Google Scholar 

  • Pirvola U, Ylikoski J (2003) Neurotrophic factors during inner ear development. Curr Top Dev Biol 57:207–223

    Article  CAS  PubMed  Google Scholar 

  • Raybould NP, Jagger DJ, Kanjhan R, Greenwood D, Laslo P, Hoya N, Soeller C, Cannell MB, Housley GD (2007) TRPC-like conductance mediates restoration of intracellular Ca2+ in cochlear outer hair cells in the guinea pig and rat. J Physiol 579:101–113

    Article  CAS  PubMed  Google Scholar 

  • Rubel EW, Fritzsch B (2002) Auditory system development: primary auditory neurons and their targets. Annu Rev Neurosci 25:51–101

    Article  CAS  PubMed  Google Scholar 

  • Tadros SF, Kim Y, Phan PAB, Birnbaumer L, Housley GD (2010) TRPC3 ion channel subunit immunolocalization in the cochlea. Histochem Cell Biol 133:137–147

    Article  CAS  PubMed  Google Scholar 

  • Trebak M, Bird GS, McKay RR, Putney JW Jr (2002) Comparison of human TRPC3 channels in receptor-activated and store-operated modes. Differential sensitivity to channel blockers suggests fundamental differences in channel composition. J Biol Chem 277:21617–21623

    Article  CAS  PubMed  Google Scholar 

  • Tritsch NX, Yi E, Gale JE, Glowatzki E, Bergles DE (2007) The origin of spontaneous activity in the developing auditory system. Nature 450:50–55

    Article  CAS  PubMed  Google Scholar 

  • van Aken AF, Atiba-Davies M, Marcotti W, Goodyear RJ, Bryant JE, Richardson GP, Noben-Trauth K, Kros CJ (2008) TRPML3 mutations cause impaired mechano-electrical transduction and depolarization by an inward-rectifier cation current in auditory hair cells of varitint-waddler mice. J Physiol 586:5403–5418

    Article  PubMed  Google Scholar 

  • Vazquez G, Wedel BJ, Kawasaki BT, Bird GS, Putney JW Jr (2004) Obligatory role of Src kinase in the signaling mechanism for TRPC3 cation channels. J Biol Chem 279:40521–40528

    Article  CAS  PubMed  Google Scholar 

  • Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417

    Article  CAS  PubMed  Google Scholar 

  • Yildirim E, Kawasaki BT, Birnbaumer L (2005) Molecular cloning of TRPC3a, an N-terminally extended, store-operated variant of the human C3 transient receptor potential channel. PNAS (USA) 102:3307–3311

    Article  CAS  Google Scholar 

  • Yoshida N, Hequembourg SJ, Atencio CA, Rosowski JJ, Liberman MC (2000) Acoustic injury in mice: 129/SvEv is exceptionally resistant to noise-induced hearing loss. Hear Res 141:97–106

    Article  CAS  PubMed  Google Scholar 

  • Zhou FW, Matta SG, Zhou FM (2008) Constitutively active TRPC3 channels regulate basal ganglia output neurons. J Neurosci 28:473–482

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by the Australian Research Council (DP1097202). We also acknowledge the support of the Intramural Research Program of the NIH (Project Z01-ES101684 to LB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary D. Housley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phan, P.A.B., Tadros, S.F., Kim, Y. et al. Developmental regulation of TRPC3 ion channel expression in the mouse cochlea. Histochem Cell Biol 133, 437–448 (2010). https://doi.org/10.1007/s00418-010-0686-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-010-0686-x

Keywords

Navigation