Skip to main content

Advertisement

Log in

Melanoma progression exhibits a significant impact on connexin expression patterns in the epidermal tumor microenvironment

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Melanoma depends on, interacts with and reacts to the stroma in which it is embedded, including fibroblasts, extracellular matrix, endothelial cells and immune cells. However, the impact of melanoma on the epidermal tumor microenvironment—the multilayered epithelium of the skin—is poorly understood. Gap junctions are essential for intercellular communication and involved in proliferation, differentiation and homeostasis of keratinocytes. We have shown previously that the gap junction proteins connexin 26 and 30 (Cx26 and Cx30) are induced in the epidermal tumor microenvironment of skin cancers including melanoma. This study compares the extent of Cx26, Cx30 and Cx43 expression in the epidermal microenvironment of melanocytic nevi and melanomas and its association with melanoma thickness, proliferative index of the tumor and its microenvironment, and with 5-year metastasis and survival. We found that induction of Cx26 and Cx30 cell–cell border expression in the epidermal tumor microenvironment correlates to malignancy. Importantly, there was a significant correlation of tumor thickness with the vertical epidermal Cx26 and Cx30 expression pattern and the horizontal Cx26 dissemination. Furthermore, horizontal Cx26 expression correlated with metastasis. Vertical epidermal expression patterns of Cx26 and Cx30 significantly correlated with the proliferative index in the epidermal tumor microenvironment but not with the proliferative index in the tumor. In contrast, Cx43 did not correlate with malignancy, thickness or proliferative index. In summary, here we show for the first time a significant association between the progression of melanoma and alterations in its epithelial tumor microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Cx:

Connexin(s)

GJ:

Gap junction

GJIC:

Gap junctional intercellular communication

References

  • Balch CM, Soong SJ, Gershenwald JE, Thompson JF, Reintgen DS, Cascinelli N, Urist M, McMasters KM, Ross MI, Kirkwood JM, Atkins MB, Thompson JA, Coit DG, Byrd D, Desmond R, Zhang Y, Liu PY, Lyman GH, Morabito A (2001) Prognostic factors analysis of 17, 600 melanoma patients: validation of the American Joint Committee on Cancer melanoma staging system. J Clin Oncol 19:3622–3634

    CAS  PubMed  Google Scholar 

  • Brandner JM, Houdek P, Husing B, Kaiser C, Moll I (2004) Connexins 26, 30, and 43: differences among spontaneous, chronic, and accelerated human wound healing. J Invest Dermatol 122:1310–1320

    Article  CAS  PubMed  Google Scholar 

  • Brandner JM, Zacheja S, Houdek P, Moll I, Lobmann R (2008) Expression of matrix metalloproteinases, cytokines, and connexins in diabetic and nondiabetic human keratinocytes before and after transplantation into an ex vivo wound-healing model. Diabetes Care 31:114–120

    Article  CAS  PubMed  Google Scholar 

  • Djalilian AR, McGaughey D, Patel S, Seo EY, Yang C, Cheng J, Tomic M, Sinha S, Ishida-Yamamoto A, Segre JA (2006) Connexin 26 regulates epidermal barrier and wound remodeling and promotes psoriasiform response. J Clin Invest 116:1243–1253

    Article  CAS  PubMed  Google Scholar 

  • Evans WH, De Vuyst E, Leybaert L (2006) The gap junction cellular internet: connexin hemichannels enter the signalling limelight. Biochem J 397:1–14

    Article  CAS  PubMed  Google Scholar 

  • Haass NK, Herlyn M (2005) Normal human melanocyte homeostasis as a paradigm for understanding melanoma. J Investig Dermatol Symp Proc 10:153–163

    Article  CAS  PubMed  Google Scholar 

  • Haass NK, Smalley KS (2009) Melanoma biomarkers: current status and utility in diagnosis, prognosis and response to therapy. Mol Diagn Ther 13:283–296

    CAS  PubMed  Google Scholar 

  • Haass NK, Houdek P, Brandner JM, Moll I (2003) Expression patterns of connexins in merkel cell carcinoma and adjacent epidermis. In: Baumann KI, Moll I, Halata Z (eds) The Merkel cell—structure—development—function—and cancerogenesis. Springer, Berlin, pp 219–222

    Google Scholar 

  • Haass NK, Smalley KS, Herlyn M (2004) The role of altered cell–cell communication in melanoma progression. J Mol Histol 35:309–318

    Article  CAS  PubMed  Google Scholar 

  • Haass NK, Smalley KS, Li L, Herlyn M (2005) Adhesion, migration and communication in melanocytes and melanoma. Pigment Cell Res 18:150–159

    Article  CAS  PubMed  Google Scholar 

  • Haass NK, Wladykowski E, Kief S, Moll I, Brandner JM (2006) Differential induction of connexins 26 and 30 in skin tumors and their adjacent epidermis. J Histochem Cytochem 54:171–182

    Article  CAS  PubMed  Google Scholar 

  • Hsu M, Andl T, Li G, Meinkoth JL, Herlyn M (2000) Cadherin repertoire determines partner-specific gap junctional communication during melanoma progression. J Cell Sci 113(Pt 9):1535–1542

    CAS  PubMed  Google Scholar 

  • Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ (2009) Cancer statistics, 2009. CA Cancer J Clin 59:225–249

    Article  PubMed  Google Scholar 

  • Kretz M, Maass K, Willecke K (2004) Expression and function of connexins in the epidermis, analyzed with transgenic mouse mutants. Eur J Cell Biol 83:647–654

    Article  CAS  PubMed  Google Scholar 

  • Langlois S, Maher AC, Manias JL, Shao Q, Kidder GM, Laird DW (2007) Connexin levels regulate keratinocyte differentiation in the epidermis. J Biol Chem 282:30171–30180

    Article  CAS  PubMed  Google Scholar 

  • Lucke T, Choudhry R, Thom R, Selmer IS, Burden AD, Hodgins MB (1999) Upregulation of connexin 26 is a feature of keratinocyte differentiation in hyperproliferative epidermis, vaginal epithelium, and buccal epithelium. J Invest Dermatol 112:354–361

    Article  CAS  PubMed  Google Scholar 

  • Maass K, Ghanem A, Kim JS, Saathoff M, Urschel S, Kirfel G, Grummer R, Kretz M, Lewalter T, Tiemann K, Winterhager E, Herzog V, Willecke K (2004) Defective epidermal barrier in neonatal mice lacking the C-terminal region of connexin43. Mol Biol Cell 15:4597–4608

    Article  CAS  PubMed  Google Scholar 

  • Man YK, Trolove C, Tattersall D, Thomas AC, Papakonstantinopoulou A, Patel D, Scott C, Chong J, Jagger DJ, O’Toole EA, Navsaria H, Curtis MA, Kelsell DP (2007) A deafness-associated mutant human connexin 26 improves the epithelial barrier in vitro. J Membr Biol 218:29–37

    Article  CAS  PubMed  Google Scholar 

  • McCarty MF, Bielenberg DR, Nilsson MB, Gershenwald JE, Barnhill RL, Ahearne P, Bucana CD, Fidler IJ (2003) Epidermal hyperplasia overlying human melanoma correlates with tumour depth and angiogenesis. Melanoma Res 13:379–387

    Article  CAS  PubMed  Google Scholar 

  • Mese G, Richard G, White TW (2007) Gap junctions: basic structure and function. J Invest Dermatol 127:2516–2524

    Article  CAS  PubMed  Google Scholar 

  • Mori R, Power KT, Wang CM, Martin P, Becker DL (2006) Acute downregulation of connexin43 at wound sites leads to a reduced inflammatory response, enhanced keratinocyte proliferation and wound fibroblast migration. J Cell Sci 119:5193–5203

    Article  CAS  PubMed  Google Scholar 

  • Santiago-Walker A, Li L, Haass NK, Herlyn M (2009) Melanocytes: from morphology to application. Skin Pharmacol Physiol 22:114–121

    Article  CAS  PubMed  Google Scholar 

  • Slater M, Scolyer RA, Gidley-Baird A, Thompson JF, Barden JA (2003) Increased expression of apoptotic markers in melanoma. Melanoma Res 13:137–145

    Article  CAS  PubMed  Google Scholar 

  • Tada J, Hashimoto K (1997) Ultrastructural localization of gap junction protein connexin 43 in normal human skin, basal cell carcinoma, and squamous cell carcinoma. J Cutan Pathol 24:628–635

    Article  CAS  PubMed  Google Scholar 

  • Villanueva J, Herlyn M (2008) Melanoma and the tumor microenvironment. Curr Oncol Rep 10:439–446

    Article  CAS  PubMed  Google Scholar 

  • Wilgenbus KK, Kirkpatrick CJ, Knuechel R, Willecke K, Traub O (1992) Expression of Cx26, Cx32 and Cx43 gap junction proteins in normal and neoplastic human tissues. Int J Cancer 51:522–529

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr Richard Scolyer (University of Sydney) for insightful discussions. NKH is recipient of a Research Grant from the German Research Foundation (HA26801) and of a Cameron Melanoma Research Fellowship (Melanoma and Skin Cancer Research Institute, The Melanoma Foundation).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nikolas K. Haass or Johanna M. Brandner.

Additional information

N. K. Haass and D. Ripperger contributed equally to this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 53 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haass, N.K., Ripperger, D., Wladykowski, E. et al. Melanoma progression exhibits a significant impact on connexin expression patterns in the epidermal tumor microenvironment. Histochem Cell Biol 133, 113–124 (2010). https://doi.org/10.1007/s00418-009-0654-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-009-0654-5

Keywords

Navigation