Skip to main content

Advertisement

Log in

The shape of caveolae is omega-like after glutaraldehyde fixation and cup-like after cryofixation

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Caveolae were defined as flask- or omega-shaped plasma membrane invaginations, abundant in adipocytes, fibroblasts, endothelial and smooth muscle cells. The major protein component of caveolar membranes is an integral membrane protein named caveolin. We compared the freeze-fracture behavior of caveolae in glutaraldehyde-fixed and cryofixed mouse fibroblast cells and found distinct differences. In glutaraldehyde-fixed cells almost all caveolae were cross-fractured through their pore and only very few caveolar membranes were membrane-fractured. We found the reverse situation in rapid frozen cells without any chemical fixation where most of the caveolae were membrane-fractured, showing different degrees of invagination from nearly flat to deeply invaginated. In ultrathin sections of glutaraldehyde-fixed heart endothelial cells, caveolae exhibit the well known omega-like shape. In high-pressure frozen, freeze-substituted and low temperature embedded heart endothelial cells, the caveolae frequently exhibit a cup-like shape without any constriction or pore. The cup-like caveolar shape could also be shown by tilt series analysis of freeze-fracture replicas obtained from cryofixed cells. Freeze-fracture immunolabeling of caveolin-1 revealed a lateral belt-like caveolin alignment. These findings point out that the constricted “neck” region of caveolae in most cases is an effect that is caused and intensified by the glutaraldehyde fixation. Our data indicate that caveolae in vivo show all degrees of invagination from nearly flat via cup-like depressed to in a few cases omega-like.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Antal M, Fukazawa Y, Eördögh M, Muszil D, Molnár E, Itakura M, Takahashi M, Shigemoto R (2008) Numbers, densities, and colocalization of AMPA- and NMDA-type glutamate receptors at individual synapses in the superficial spinal dorsal horn of rats. J Neurosci 28(39):9692–9701

    Article  CAS  PubMed  Google Scholar 

  • Benlimame N, Le PU, Nabi IR (1998) Localization of autocrine motility factor receptor to caveolae and clathrin-independent internalization of its ligand to smooth endoplasmic reticulum. Mol Biol Cell 9:1773–1786

    CAS  PubMed  Google Scholar 

  • Cohen AW, Hnasko R, Schubert W, Lisanti MP (2004) Role of caveolae and caveolins in health and disease. Physiol Rev 84:1341–1379

    Article  CAS  PubMed  Google Scholar 

  • Collins VP, Arborgh B, Brunk U (1977) A comparison of the effects of three widely used glutaraldehyde fixatives on cellular volume and structure. A TEM, SEM, volumetric and cytochemical study. Acta Pathol Microbiol Immunol Scand Sect A Pathol 85A:157–168

    CAS  Google Scholar 

  • Couet J, Li S, Okamoto T, Scherer PS, Lisanti MP (1997) Molecular and cellular biology of caveolae: paradoxes and plasticities. Trends Cardiovasc Med 7:103–110

    Article  CAS  Google Scholar 

  • Ebersold HR, Cordier JL, Lüthy P (1981) Bacterial mesosomes: method dependent artifacts. Arch Microbiol 130:19–22

    Article  CAS  PubMed  Google Scholar 

  • Foti M, Porcheron G, Fournier M, Maeder C, Carpentier JL (2007) The neck of caveolae is a distinct plasma membrane subdomain that concentrates insulin receptors in 3T3-L1 adipocytes. Proc Natl Acad Sci USA 104:1242–1247

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto K (1995) Freeze-fracture replica electron microscopy combined with SDS digestion for cytochemical labeling of integral membrane proteins. Application to the immunogold labeling of intercellular junctional complexes. J Cell Sci 108:3443–3449

    CAS  PubMed  Google Scholar 

  • Fujimoto K (1997) SDS-digested freeze-fracture replica labelling electron microscopy to study the two-dimensional distribution of integral membrane proteins and phospholipids in biomembranes: practical procedure, interpretation and application. Histochem Cell Biol 107:87–96

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto T, Fujimoto K (1997) Metal sandwich method to quick-freeze monolayer cultured cells for freeze-fracture. J Histochem Cytochem 45:595–598

    CAS  PubMed  Google Scholar 

  • Fujimoto T, Kogo H, Nomura R, Une T (2000) Isoforms of caveolin-1 and caveolar structure. J Cell Sci 113:3509–3517

    CAS  PubMed  Google Scholar 

  • Hommelgaard AM, Roepstorff K, Vilhardt F, Torgersen ML, Sandvig K, van Deurs B (2005) Caveolae: stable membrane domains with a potential for internalization. Traffic 6:720–724

    Article  CAS  PubMed  Google Scholar 

  • Johnson TJA (1985) Aldehyde fixatives: quantification of acidproducing reactions. J Electron Microsc Techn 2:129–138

    Article  CAS  Google Scholar 

  • Jost P, Brooks UJ, Griffith OH (1973) Fluidity of phospholipid bilayers and membranes after exposure to osmium tetroxide and gluteraldehyde. J Mol Biol 76:313–318

    Article  CAS  PubMed  Google Scholar 

  • Kirschning E, Rutter G, Hohenberg H (1988) High-pressure freezing and freeze-substitution of native rat brain: suitability for preservation and immunoelectron microscopic localization of myelin glycolipids. J Neurosci Res 53:465–474

    Article  Google Scholar 

  • Lee RM, McKenzie R, Kobayashi K, Garfield RE, Forrest JB, Daniel EE (1982) Effects of glutaraldehyde fixative osmolarities onsmooth muscle cell volume, and osmotic reactivity of the cells after fixation. J Microsc 125:77–88

    CAS  PubMed  Google Scholar 

  • McGuire PG, Twietmeyer TA (1983) Morphology of rapidly frozen aortic endothelial cells. Glutaraldehyde fixation increases the number of caveolae. Circ Res 53:424–429

    CAS  PubMed  Google Scholar 

  • Palade GE (1953) Fine structure of blood capillaries. J Appl Phys 24:1424

    Google Scholar 

  • Parton RG, Joggerst B, Simons K (1994) Regulated internalization of caveolae. J Cell Biol 127:1199–1215

    Article  CAS  PubMed  Google Scholar 

  • Richter T, Floetenmeyer M, Ferguson C, Galea J, Goh J, Lindsay MR, Morgan GP, Marsh BJ, Parton RG (2008) High-resolution 3D quantitative analysis of caveolar ultrastructure and caveola-cytoskeleton interactions. Traffic 9:893–909

    Article  CAS  PubMed  Google Scholar 

  • Robinson JM, Hoover RL, Karnovsky MJ (1984) Vesicle (caveolae) number is reduced in cultured endothelial cells prepared for electron microscopy by rapid-freezing. J Cell Biol 99:287a

    Article  Google Scholar 

  • Rothberg KG, Heuser JE, Donzell WC, Ying Y-S, Glenney JR, Anderson RGW (1992) Caveolin, a protein component of caveolae membrane coats. Cell 68:673–682

    Article  CAS  PubMed  Google Scholar 

  • Schloermann W, John M, Steiniger F, Westermann M, Richter W (2007) Improved antigen retrieval in freeze-fracture cytochemistry by evaporation of carbon as first replication layer. Histochem Cell Biol 127:633–639

    Article  CAS  Google Scholar 

  • Severs NJ (1988) Caveolae: static inpocketings of the plasma membrane, dynamic vesicles or plain artifact? J Cell Sci 90:341–348

    PubMed  Google Scholar 

  • Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39

    Article  CAS  PubMed  Google Scholar 

  • Stan RV (2002) Structure and function of endothelial caveolae. Microsc Res Tech 57:350–364

    Article  PubMed  Google Scholar 

  • Szczesny PJ, Walther P, Müller M (1996) Light damage in rod outer segments: the effects of fixation on ultrastructural alterations. Curr Eye Res 15:807–814

    Article  CAS  PubMed  Google Scholar 

  • Thomas CM, Smart EJ (2008) Caveolae structure and function. J Cell Mol Med 12:796–809

    Article  CAS  PubMed  Google Scholar 

  • Westermann M, Steiniger F, Richter W (2005) Belt-like localisation of caveolin in deep caveolae and its re-distribution after cholesterol depletion. Histochem Cell Biol 123:613–620

    Article  CAS  PubMed  Google Scholar 

  • Yamada E (1955) The fine structure of the gall bladder epithelium of the mouse. J Biophys Biochem Cytol 1:445–458

    Article  CAS  PubMed  Google Scholar 

  • Yao Q, Chen J, Cao H, Orth JD, McCaffery JM, Stan RV, McNiven MA (2005) Caveolin-1 interacts directly with dynamin-2. J Mol Biol 348:491–501

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Westermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlörmann, W., Steiniger, F., Richter, W. et al. The shape of caveolae is omega-like after glutaraldehyde fixation and cup-like after cryofixation. Histochem Cell Biol 133, 223–228 (2010). https://doi.org/10.1007/s00418-009-0651-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-009-0651-8

Keywords

Navigation