Skip to main content
Log in

Characterization of bovine fetal Leydig cells by KIT expression

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The origin of fetal Leydig cells (FLC) and whether they share a common lineage with adult Leydig cells (ALC) is still under debate, and a marker to reliably track and isolate fetal Leydig precursor cells remains to be identified. We analyzed KIT positive (KIT+) cells in gonads from bovine fetuses with crown-rump-length (CRL) 2.5–85 cm by immunohistochemistry, and found that KIT expression was gender-specific. In female gonads, expression was mainly associated with epithelial cell cords, which extended from the surface epithelium towards the KIT-negative inner stroma. In male gonads of fetuses, after CRL 2.9 cm, KIT expression was strikingly strong in interstitial cells (IC). Only a few KIT+ cells were detected in the epithelial cell cords and in the stromal layer under the surface epithelium after CRL 3.5 cm. In the male fetuses, KIT expression in IC was a continuous and characteristic feature until full term. At all developmental stages KIT+ areas alternated with anti-Müllerian hormone-positive areas. Platelet-derived growth factor receptor α production was initiated after the expression of KIT at CRL 4.5 cm. Detection of cytochrome P450 side chain cleavage enzyme and steroidogenic acute regulatory protein in KIT+ IC identified them as FLC. KIT+ cells, isolated from testes by magnetic-activated cell sorting, retained their steroidogenic capacity in vitro. Together, these findings show that KIT+ IC of fetal testis correspond to FLC, which can be successfully cultivated for advanced studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ariyaratne HB, Chamindrani Mendis-Handagama S (2000) Changes in the testis interstitium of Sprague–Dawley rats from birth to sexual maturity. Biol Reprod 62:680–690

    Article  CAS  PubMed  Google Scholar 

  • Barlow NJ, Phillips SL, Wallace DG, Sar M, Gaido KW, Foster PM (2003) Quantitative changes in gene expression in fetal rat testes following exposure to di(n-butyl) phthalate. Toxicol Sci 73:431–441

    Article  CAS  PubMed  Google Scholar 

  • Barroca V, Lassalle B, Coureuil M, Louis JP, Le Page F, Testart J, Allemand I, Riou L, Fouchet P (2009) Mouse differentiating spermatogonia can generate germinal stem cells in vivo. Nat Cell Biol 11:190–196

    Article  CAS  PubMed  Google Scholar 

  • Brennan J, Tilmann C, Capel B (2003) Pdgfr-alpha mediates testis cord organization and fetal Leydig cell development in the XY gonad. Genes Dev 17:800–810

    Article  CAS  PubMed  Google Scholar 

  • Carlsson IB, Laitinen MP, Scott JE, Louhio H, Velentzis L, Tuuri T, Aaltonen J, Ritvos O, Winston RM, Hovatta O (2006) Kit ligand and c-Kit are expressed during early human ovarian follicular development and their interaction is required for the survival of follicles in long-term culture. Reproduction 131:641–649

    Article  CAS  PubMed  Google Scholar 

  • Curran S, Ginther OJ (1991) Ultrasonic determination of fetal gender in horses and cattle under farm conditions. Theriogenology 36:809–814

    Article  CAS  PubMed  Google Scholar 

  • Dominguez MM, Liptrap RM, Basrur PK (1988) Steroidogenesis in fetal bovine gonads. Can J Vet Res 52:401–406

    CAS  PubMed  Google Scholar 

  • Dong L, Jelinsky SA, Finger JN, Johnston DS, Kopf GS, Sottas CM, Hardy MP, Ge RS (2007) Gene expression during development of fetal and adult Leydig cells. Ann NY Acad Sci 1120:16–35

    Article  CAS  PubMed  Google Scholar 

  • Duffaud F, Le Cesne A (2009) Imatinib in the treatment of solid tumours. Targeted oncology 4:45–56

    Article  PubMed  Google Scholar 

  • Fox RA, Sigman M, Boekelheide K (2000) Transmembrane versus soluble stem cell factor expression in human testis. J Androl 21:579–585

    CAS  PubMed  Google Scholar 

  • Gaskell TL, Esnal A, Robinson LL, Anderson RA, Saunders PT (2004) Immunohistochemical profiling of germ cells within the human fetal testis: identification of three subpopulations. Biol Reprod 71:2012–2021

    Article  CAS  PubMed  Google Scholar 

  • Ge RS, Dong Q, Sottas CM, Papadopoulos V, Zirkin BR, Hardy MP (2006) In search of rat stem Leydig cells: identification, isolation, and lineage-specific development. Proc Natl Acad Sci U S A 103:2719–2724

    Article  CAS  PubMed  Google Scholar 

  • Gnessi L, Basciani S, Mariani S, Arizzi M, Spera G, Wang C, Bondjers C, Karlsson L, Betsholtz C (2000) Leydig cell loss and spermatogenic arrest in platelet-derived growth factor (PDGF)-A-deficient mice. J Cell Biol 149:1019–1026

    Article  CAS  PubMed  Google Scholar 

  • Habermehl K-H (1975) Die Altersbestimmung bei Haus- und Labortieren, 2nd edn. Paul Parey, Berlin, Hamburg, pp 110–132

  • Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, Crystal RG, Besmer P, Lyden D, Moore MA, Werb Z, Rafii S (2002) Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109:625–637

    Article  CAS  PubMed  Google Scholar 

  • Hikono H, Ohta M, Kubota T, Zhou JH, Inumaru S, Sakurai M (1999) Production and characterization of monoclonal antibodies that recognize bovine Kit receptor. Vet Immunol Immunopathol 68:101–112

    Article  CAS  PubMed  Google Scholar 

  • Hoyer PE, Byskov AG, Mollgard K (2005) Stem cell factor and c-Kit in human primordial germ cells and fetal ovaries. Mol Cell Endocrinol 234:1–10

    Article  CAS  PubMed  Google Scholar 

  • Hullinger RL, Wensing CJ (1985) Testicular organogenesis in the fetal calf: interstitial endocrine (Leydig) cell development. Acta Anat (Basel) 121:99–109

    Article  CAS  Google Scholar 

  • Izadyar F, Spierenberg GT, Creemers LB, den Ouden K, de Rooij DG (2002) Isolation and purification of type A spermatogonia from the bovine testis. Reproduction 124:85–94

    Article  CAS  PubMed  Google Scholar 

  • Kerr JB, Knell CM (1988) The fate of fetal Leydig cells during the development of the fetal and postnatal rat testis. Development 103:535–544

    CAS  PubMed  Google Scholar 

  • Kim CK, Yen SS, Benirschke K (1972) Serum testosterone in fetal cattle. Gen Comp Endocrinol 18:404–407

    Article  CAS  PubMed  Google Scholar 

  • Kissel H, Timokhina I, Hardy MP, Rothschild G, Tajima Y, Soares V, Angeles M, Whitlow SR, Manova K, Besmer P (2000) Point mutation in kit receptor tyrosine kinase reveals essential roles for kit signaling in spermatogenesis and oogenesis without affecting other kit responses. Embo J 19:1312–1326

    Article  CAS  PubMed  Google Scholar 

  • Knospe C (1998) The development of the horse testis. Anat Histol Embryol 27:219–222

    Article  CAS  PubMed  Google Scholar 

  • Koch D, Sakurai M, Hummitzsch K, Hermsdorf T, Erdmann S, Schwalbe S, Stolzenburg JU, Spanel-Borowski K, Ricken AM (2009) KIT variants in bovine ovarian cells and corpus luteum. Growth Factors 27:100–113

    Article  CAS  PubMed  Google Scholar 

  • Lasota J, Miettinen M (2008) Clinical significance of oncogenic KIT and PDGFRA mutations in gastrointestinal stromal tumours. Histopathology 53:245–266

    Article  CAS  PubMed  Google Scholar 

  • Majdic G, Saunders PT, Teerds KJ (1998) Immunoexpression of the steroidogenic enzymes 3-beta hydroxysteroid dehydrogenase and 17 alpha-hydroxylase, C17,20 lyase and the receptor for luteinizing hormone (LH) in the fetal rat testis suggests that the onset of Leydig cell steroid production is independent of LH action. Biol Reprod 58:520–525

    Google Scholar 

  • Manova K, Nocka K, Besmer P, Bachvarova RF (1990) Gonadal expression of c-kit encoded at the W locus of the mouse. Development 110:1057–1069

    CAS  PubMed  Google Scholar 

  • Mauduit C, Chatelain G, Magre S, Brun G, Benahmed M, Michel D (1999) Regulation by pH of the alternative splicing of the stem cell factor pre-mRNA in the testis. J Biol Chem 274:770–775

    Article  CAS  PubMed  Google Scholar 

  • Miller DW, Harrison JL, Brown YA, Doyle U, Lindsay A, Adam CL, Lea RG (2005) Immunohistochemical evidence for an endocrine/paracrine role for ghrelin in the reproductive tissues of sheep. Reprod Biol Endocrinol 3:60

    Article  PubMed  CAS  Google Scholar 

  • Munsie M, Schlatt S, deKretser DM, Loveland KL (1997) Expression of stem cell factor in the postnatal rat testis. Mol Reprod Dev 47:19–25

    Article  CAS  PubMed  Google Scholar 

  • Nagamine CM, Carlisle C (1996) The dominant white spotting oncogene allele Kit(W-42 J) exacerbates XY(DOM) sex reversal. Development 122:3597–3605

    CAS  PubMed  Google Scholar 

  • O’Shaughnessy PJ, Baker PJ, Heikkila M, Vainio S, McMahon AP (2000) Localization of 17beta-hydroxysteroid dehydrogenase/17-ketosteroid reductase isoform expression in the developing mouse testis–androstenedione is the major androgen secreted by fetal/neonatal leydig cells. Endocrinology 141:2631–2637

    Article  PubMed  Google Scholar 

  • O’Shaughnessy PJ, Baker PJ, Johnston H (2006) The foetal Leydig cell—differentiation, function and regulation. Int J Androl 29:90–95 (discussion 105–108)

    Google Scholar 

  • Orr-Urtreger A, Avivi A, Zimmer Y, Givol D, Yarden Y, Lonai P (1990) Developmental expression of c-kit, a proto-oncogene encoded by the W locus. Development 109:911–923

    CAS  PubMed  Google Scholar 

  • Ostrer H, Huang HY, Masch RJ, Shapiro E (2007) A cellular study of human testis development. Sex Dev 1:286–292

    Article  CAS  PubMed  Google Scholar 

  • Pauls K, Schorle H, Jeske W, Brehm R, Steger K, Wernert N, Buttner R, Zhou H (2006) Spatial expression of germ cell markers during maturation of human fetal male gonads: an immunohistochemical study. Hum Reprod 21:397–404

    Article  CAS  PubMed  Google Scholar 

  • Prince FP (1990) Ultrastructural evidence of mature Leydig cells and Leydig cell regression in the neonatal human testis. Anat Rec 228:405–417

    Article  CAS  PubMed  Google Scholar 

  • Risbridger GP, Hedger MP (1992) Adult rat Leydig cell cultures: minimum requirements for maintenance of luteinizing hormone responsiveness and testosterone production. Mol Cell Endocrinol 83:125–132

    Article  CAS  PubMed  Google Scholar 

  • Rivarola MA, Belgorosky A, Berensztein E, de Davila MT (1995) Human prepubertal testicular cells in culture: steroidogenic capacity, paracrine and hormone control. J Steroid Biochem Mol Biol 53:119–125

    Article  CAS  PubMed  Google Scholar 

  • Rothschild G, Sottas CM, Kissel H, Agosti V, Manova K, Hardy MP, Besmer P (2003) A role for kit receptor signaling in Leydig cell steroidogenesis. Biol Reprod 69:925–932

    Article  CAS  PubMed  Google Scholar 

  • Sandlow JI, Feng HL, Cohen MB, Sandra A (1996) Expression of c-KIT and its ligand, stem cell factor, in normal and subfertile human testicular tissue. J Androl 17:403–408

    CAS  PubMed  Google Scholar 

  • Shemesh M, Allenberg M, Milaguir F, Ayalon N, Hansel W (1978) Hormone secretion by cultured bovine pre- and postimplantation gonads. Biol Reprod 19:761–767

    Article  CAS  PubMed  Google Scholar 

  • Snyder DS, Small PL (2001) Staining of cellular mitochondria with LDS-751. J Immunol Methods 257:35–40

    Article  CAS  PubMed  Google Scholar 

  • Spanel-Borowski K, Sass K, Loffler S, Brylla E, Sakurai M, Ricken AM (2007) KIT receptor-positive cells in the bovine corpus luteum are primarily theca-derived small luteal cells. Reproduction 134:625–634

    Article  CAS  PubMed  Google Scholar 

  • Stoop H, Honecker F, van de Geijn GJ, Gillis AJ, Cools MC, de Boer M, Bokemeyer C, Wolffenbuttel KP, Drop SL, de Krijger RR, Dennis N, Summersgill B, McIntyre A, Shipley J, Oosterhuis JW, Looijenga LH (2008) Stem cell factor as a novel diagnostic marker for early malignant germ cells. J Pathol 216:43–54

    Article  CAS  PubMed  Google Scholar 

  • Struck H, Karg H, Jork H (1968) Thin-layer chromatographic determination of testosterone and delta-4-androstene-3, 17-dione from bovine fetal testicular tissue. J Chromatogr 36:74–83

    Article  CAS  PubMed  Google Scholar 

  • Tang H, Brennan J, Karl J, Hamada Y, Raetzman L, Capel B (2008) Notch signaling maintains Leydig progenitor cells in the mouse testis. Development 135:3745–3753

    Article  CAS  PubMed  Google Scholar 

  • Tisdall DJ, Fidler AE, Smith P, Quirke LD, Stent VC, Heath DA, McNatty KP (1999) Stem cell factor and c-kit gene expression and protein localization in the sheep ovary during fetal development. J Reprod Fertil 116:277–291

    Article  CAS  PubMed  Google Scholar 

  • Valnes K, Brandtzaeg P (1985) Retardation of immunofluorescence fading during microscopy. J Histochem Cytochem 33:755–761

    CAS  PubMed  Google Scholar 

  • Vigier B, Prepin J, Jost A (1976) Chronology of development of the genital tract of the calf fetus. Arch Anat Microsc Morphol Exp 65:77–101

    CAS  PubMed  Google Scholar 

  • Weikard R, Kuhn C, Brunner RM, Roschlau D, Pitra C, Laurent P, Schwerin M (2001) Sex determination in cattle based on simultaneous amplification of a new male-specific DNA sequence and an autosomal locus using the same primers. Mol Reprod Dev 60:13–19

    Article  CAS  PubMed  Google Scholar 

  • Yoshinaga K, Nishikawa S, Ogawa M, Hayashi S, Kunisada T, Fujimoto T, Nishikawa S (1991) Role of c-kit in mouse spermatogenesis: identification of spermatogonia as a specific site of c-kit expression and function. Development 113:689–699

    CAS  PubMed  Google Scholar 

  • Zhang ZJ, Sieber-Blum M (2009) Essential role of stem cell factor signaling in primary sensory neuron development. Dev Neurosci 31:202–211

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We cordially thank Prof. J. Y. Picard at the Unité de Recherches sur l’Endocrinologie du Développement, INSERM u493, Clamart, France, for the generous gift of the antibody. We are grateful to Annemarie Brachmann and Angela Ehrlich for their outstanding laboratory support. Katja Sygnecka, Katja Hummitzsch and Daniela Koch provided technical advice during the entire project. We thank Dr. G. Domel and his veterinarian team for their support at Südost Fleisch GmBH, Alternburg Germany. We also acknowledge the assistance of San Francisco Edit in editing this manuscript. Financial support was obtained from the German Research Foundation (DFG-Sp 232/12-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Markus Ricken.

Additional information

K. Spanel-Borowski and A. M. Ricken contributed equally to this work as senior authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsikolia, N., Merkwitz, C., Sass, K. et al. Characterization of bovine fetal Leydig cells by KIT expression. Histochem Cell Biol 132, 623–632 (2009). https://doi.org/10.1007/s00418-009-0640-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-009-0640-y

Keywords

Navigation