Skip to main content
Log in

Autometallographic enhancement of the Golgi-Cox staining enables high resolution visualization of dendrites and spines

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

We present a method for autometallographic (AMG) enhancement of the Golgi-Cox staining enabling high resolution visualization of dendrites and spines. The method is cheaper and more flexible than conventional enhancement procedures performed with commercial photographic developers. The staining procedure is thoroughly described and we demonstrate with qualitative and quantitative data, how histological tissue sectioning, Golgi-Cox immersion time and different AMG enhancement length may influence the staining of dendrites and spines in the rat hippocampus. The described method will be of value for future behavioural-anatomical studies, examining changes in dendrite branching and spine density caused by brain diseases and their subsequent treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Chao HW, Hong CJ, Huang TN, Lin YL, Hsueh YP (2008) SUMOylation of the MAGUK protein CASK regulates dendritic spinogenesis. J Cell Biol 182:141–155

    Article  PubMed  CAS  Google Scholar 

  • Chapleau CA, Carlo ME, Larimore JL, Pozzo-Miller L (2008) The actions of BDNF on dendritic spine density and morphology in organotypic slice cultures depend on the presence of serum in culture media. J Neurosci Methods 169:182–190

    Article  PubMed  CAS  Google Scholar 

  • Dalla C, Whetstone AS, Hodes GE, Shors TJ (2009) Stressful experience has opposite effects on dendritic spines in the hippocampus of cycling versus masculinized females. Neurosci Lett 449:52–56

    Article  PubMed  CAS  Google Scholar 

  • Danscher G (1981) Light and electron microscopic localization of silver in biological tissue. Histochemistry 71:177–186

    Article  PubMed  CAS  Google Scholar 

  • Danscher G (1984) Autometallography. A new technique for light and electron microscopic visualization of metals in biological tissues (gold, silver, metal sulphides and metal selenides). Histochemistry 81:331–335

    Article  PubMed  CAS  Google Scholar 

  • Danscher G, Stoltenberg M (2006) Silver enhancement of quantum dots resulting from (1) metabolism of toxic metals in animals and humans, (2) in vivo, in vitro and immersion created zinc-sulphur/zinc-selenium nanocrystals, (3) metal ions liberated from metal implants and particles. Prog Histochem Cytochem 41:57–139

    Article  PubMed  CAS  Google Scholar 

  • Friedland DR, Los JG, Ryugo DK (2006) A modified Golgi staining protocol for use in the human brain stem and cerebellum. J Neurosci Methods 150:90–95

    Article  PubMed  CAS  Google Scholar 

  • Geisler S, Heilmann H, Veh RW (2002) An optimized method for simultaneous demonstration of neurons and myelinated fiber tracts for delineation of individual trunco- and palliothalamic nuclei in the mammalian brain. Histochem Cell Biol 117:69–79

    Article  PubMed  CAS  Google Scholar 

  • Gibb R, Kolb B (1998) A method for vibratome sectioning of Golgi-Cox stained whole rat brain. J Neurosci Methods 79:1–4

    Article  PubMed  CAS  Google Scholar 

  • Heinz T (2005) Evolution of the silver and gold stains in neurohistology. Biotech Histochem 80:211–222

    Article  PubMed  CAS  Google Scholar 

  • Landas S, Phillips MI (1982) Staining of human and rat brain Vibratome sections by a new Golgi method. J Neurosci Methods 5:147–151

    Article  PubMed  CAS  Google Scholar 

  • Larsen M, Bjarkam CR, Stoltenberg M, Sorensen JC, Danscher G (2003) An autometallographic technique for myelin staining in formaldehyde-fixed tissue. Histol Histopathol 18:1125–1130

    PubMed  CAS  Google Scholar 

  • Livet J, Weissman TA, Kang H, Draft RW, Lu J, Bennis RA, Sanes JR, Lichtman JW (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450:56–62

    Article  PubMed  CAS  Google Scholar 

  • Long KD, Ahmadi F, Srivastava N, Speckmann W (2008) Enriched neuronal morphology revealed by monoclonal cocktail immunostaining. Society for Neuroscience, Washington, November 2008

  • Lopez-Munoz F, Boya J, Alamo C (2006) Neuron theory, the cornerstone of neuroscience, on the centenary of the Nobel Prize award to Santiago Ramon y Cajal. Brain Res Bull 70:391–405

    Article  PubMed  Google Scholar 

  • Marquis JP, Goulet S, Dore FY (2008) Neonatal ventral hippocampus lesions disrupt extra-dimensional shift and alter dendritic spine density in the medial prefrontal cortex of juvenile rats. Neurobiol Learn Mem 90:339–346

    Article  PubMed  Google Scholar 

  • Niu S, Yabut O, D’Arcangelo G (2008) The Reelin signaling pathway promotes dendritic spine development in hippocampal neurons. J Neurosci 28:10339–10348

    Article  PubMed  CAS  Google Scholar 

  • Pasternak JF, Woolsey TA (1975) On the “selectivity” of the Golgi-Cox method. J Comp Neurol 160:307–312

    Article  PubMed  CAS  Google Scholar 

  • Pilati N, Barker M, Panteleimonitis S, Donga R, Hamann M (2008) A rapid method combining Golgi and Nissl staining to study neuronal morphology and cytoarchitecture. J Histochem Cytochem 56:539–550

    Article  PubMed  CAS  Google Scholar 

  • Popov VI, Medvedev NI, Kraev IV, Gabbott PL, Davies HA, Lynch M, Cowley TR, Berezin V, Bock E, Stewart MG (2008) A cell adhesion molecule mimetic, FGL peptide, induces alterations in synapse and dendritic spine structure in the dentate gyrus of aged rats: a three-dimensional ultrastructural study. Eur J Neurosci 27:301–314

    Article  PubMed  Google Scholar 

  • Pyapali GK, Sik A, Penttonen M, Buzsaki G, Turner DA (1998) Dendritic properties of hippocampal CA1 pyramidal neurons in the rat: intracellular staining in vivo and in vitro. J Comp Neurol 391:335–352

    Article  PubMed  CAS  Google Scholar 

  • Ramón y Cajal S, Pasik P, Pasik T (1999) Texture of the nervous system of man and the vertebrates, vol 1. Springer, Wien; New York

  • Rosoklija G, Mancevski B, Ilievski B, Perera T, Lisanby SH, Coplan JD, Duma A, Serafimova T, Dwork AJ (2003) Optimization of Golgi methods for impregnation of brain tissue from humans and monkeys. J Neurosci Methods 131:1–7

    Article  PubMed  CAS  Google Scholar 

  • Rotolo T, Smallwood PM, Williams J, Nathans J (2008) Genetically-directed, cell type-specific sparse labeling for the analysis of neuronal morphology. PLoS ONE 3:e4099

    Article  PubMed  CAS  Google Scholar 

  • Ruan YW, Lei Z, Fan Y, Zou B, Xu ZC (2009) Diversity and fluctuation of spine morphology in CA1 pyramidal neurons after transient global ischemia. J Neurosci Res 87:61–68

    Article  PubMed  CAS  Google Scholar 

  • Shen H, Sesack SR, Toda S, Kalivas PW (2008) Automated quantification of dendritic spine density and spine head diameter in medium spiny neurons of the nucleus accumbens. Brain Struct Funct 213:149–157

    Article  PubMed  Google Scholar 

  • Spacek J (1989) Dynamics of the Golgi method: a time-lapse study of the early stages of impregnation in single sections. J Neurocytol 18:27–38

    Article  PubMed  CAS  Google Scholar 

  • Stean JP (1974) Some evidence of the nature of the Golgi-Cox deposit and its biochemical origin. Histochemistry 40:377–383

    Article  PubMed  CAS  Google Scholar 

  • Stoltenberg M, Danscher G (2000) Histochemical differentiation of autometallographically traceable metals (Au, Ag, Hg, Bi, Zn): protocols for chemical removal of separate autometallographic metal clusters in Epon sections. Histochem J 32:645–652

    Article  PubMed  CAS  Google Scholar 

  • Whitcher LT, Klintsova AY (2008) Postnatal binge-like alcohol exposure reduces spine density without affecting dendritic morphology in rat mPFC. Synapse 62:566–573

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge with gratitude the skilful assistance of Ms. D. Jensen. This study was supported by grants from The Lundbeck Foundation, and The Danish Medical Research Council (FSS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariusz Orlowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orlowski, D., Bjarkam, C.R. Autometallographic enhancement of the Golgi-Cox staining enables high resolution visualization of dendrites and spines. Histochem Cell Biol 132, 369–374 (2009). https://doi.org/10.1007/s00418-009-0611-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-009-0611-3

Keywords

Navigation