Skip to main content
Log in

Localization, function and regulation of the two intestinal fatty acid-binding protein types

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Although intestinal (I) and liver (L) fatty acid binding proteins (FABP) have been widely studied, the physiological significance of the presence of the two FABP forms (I- and L-FABP) in absorptive cells remains unknown as do the differences related to their distribution along the crypt-villus axis, regional expression, ontogeny and regulation in the human intestine. Our morphological experiments supported the expression of I- and L-FABP as early as 13 weeks of gestation. Whereas cytoplasmic immunofluorescence staining of L-FABP was barely detectable in the lower half of the villus and in the crypt epithelial cells, I-FABP was visualized in epithelial cells of the crypt-villus axis in all intestinal segments until the adult period in which the staining was maximized in the upper part of the villus. Immunoelectron microscopy revealed more intense labeling of L-FABP compared with I-FABP, accompanied with a heterogeneous distribution in the cytoplasm, microvilli and basolateral membranes. By western blot analysis, I- and L-FABP at 15 weeks of gestation appeared predominant in jejunum compared with duodenum, ileum, proximal and distal colon. Exploration of the maturation aspect documented a rise in L-FABP in adult tissues. Permanent transfections of Caco-2 cells with I-FABP cDNA resulted in decreased lipid export, apolipoprotein (apo) biogenesis and chylomicron secretion. Additionally, supplementation of Caco-2 with insulin, hydrocortisone and epidermal growth factor differentially modulated the expression of I- and L-FABP, apo B-48 and microsomal triglyceride transfer protein (MTP), emphasizing that these key proteins do not exhibit a parallel modulation. Overall, our findings indicate that the two FABPs display differences in localization, regulation and developmental pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

Apo:

Apolipoprotein

BSA:

Bovine serum albumin

CE:

Cholesteryl esters

EGF:

Epidermal growth factor

ER:

Endoplasmic reticulum

FA:

Fatty acids

FABP:

Fatty acid binding proteins

FBS:

Fetal bovine serum

GST:

glutathione S-transferase

LDL:

Low-density lipoprotein

MEM:

Minimum essential medium

MTP:

Microsomal triglyceride transfer protein

PBS:

Phosphate-buffered saline

PL:

Phospholipids

TCA:

Trichloroacetic acid

TG:

Triglyceride

References

  • Alpers DH, Bass NM, Engle MJ, Schryver-Kecskemeti K (2000) Intestinal fatty acid binding protein may favor differential apical fatty acid binding in the intestine. Biochim Biophys Acta 1483:352–362

    PubMed  CAS  Google Scholar 

  • Bass NM (1988) The cellular fatty acid binding proteins: aspects of structure, regulation, and function. Int Rev Cytol 111:143–184

    Article  PubMed  CAS  Google Scholar 

  • Bendayan M (1995) Colloidal gold post-embedding immunocytochemistry. Prog Histochem Cytochem 29:1–159

    PubMed  CAS  Google Scholar 

  • Bendayan M (2001) Tech.Sight. Worth its weight in gold. Science 291:1363–1365

    Article  PubMed  CAS  Google Scholar 

  • Cartwright IJ, Plonne D, Higgins JA (2000) Intracellular events in the assembly of chylomicrons in rabbit enterocytes. J Lipid Res 41:1728–1739

    PubMed  CAS  Google Scholar 

  • Cistola DP, Sacchettini JC, Banaszak LJ, Walsh MT, Gordon JI (1989) Fatty acid interactions with rat intestinal and liver fatty acid-binding proteins expressed in Escherichia coli. A comparative 13C NMR study. J Biol Chem 264:2700–2710

    PubMed  CAS  Google Scholar 

  • Concha MI, Santander C, Villanueva J, Amthauer R (2002) Specific binding of the endocytosis tracer horseradish peroxidase to intestinal fatty acid-binding protein (I-FABP) in apical membranes of carp enterocytes. J Exp Zool 293:541–550

    Article  PubMed  CAS  Google Scholar 

  • Courtois F, Suc I, Garofalo C, Ledoux M, Seidman E, Levy E (2000) Iron-ascorbate alters the efficiency of Caco-2 cells to assemble and secrete lipoproteins. Am J Physiol Gastrointest Liver Physiol 279:G12–G19

    PubMed  CAS  Google Scholar 

  • Darimont C, Gradoux N, Persohn E, Cumin F, De Pover A (2000) Effects of intestinal fatty acid-binding protein overexpression on fatty acid metabolism in Caco-2 cells. J Lipid Res 41:84–92

    PubMed  CAS  Google Scholar 

  • Davidson NO, Shelness GS (2000) APOLIPOPROTEIN B: mRNA editing, lipoprotein assembly, and presecretory degradation. Annu Rev Nutr 20:169–193

    Article  PubMed  CAS  Google Scholar 

  • Davis RA (1999) Cell and molecular biology of the assembly and secretion of apolipoprotein B-containing lipoproteins by the liver. Biochim Biophys Acta 1440:1–31

    PubMed  CAS  Google Scholar 

  • Dixon JL, Ginsberg HN (1993) Regulation of hepatic secretion of apolipoprotein B-containing lipoproteins: information obtained from cultured liver cells. J Lipid Res 34:167–179

    PubMed  CAS  Google Scholar 

  • Dube N, Delvin E, Yotov W, Garofalo C, Bendayan M, Veerkamp JH, Levy E (2001) Modulation of intestinal and liver fatty acid-binding proteins in Caco-2 cells by lipids, hormones and cytokines. J Cell Biochem 81:613–620

    Article  PubMed  CAS  Google Scholar 

  • Erol E, Kumar LS, Cline GW, Shulman GI, Kelly DP, Binas B (2004) Liver fatty acid binding protein is required for high rates of hepatic fatty acid oxidation but not for the action of PPARalpha in fasting mice. FASEB J 18:347–349

    PubMed  CAS  Google Scholar 

  • Glatz JF, Veerkamp JH (1985) Intracellular fatty acid-binding proteins. Int J Biochem 17:13–22

    Article  PubMed  CAS  Google Scholar 

  • Gordon JI, Lowe JB (1985) Analyzing the structures, functions and evolution of two abundant gastrointestinal fatty acid binding proteins with recombinant DNA and computational techniques. Chem Phys Lipids 38:137–158

    Article  PubMed  CAS  Google Scholar 

  • Gordon JI, Elshourbagy N, Lowe JB, Liao WS, Alpers DH, Taylor JM (1985) Tissue specific expression and developmental regulation of two genes coding for rat fatty acid binding proteins. J Biol Chem 260:1995–1998

    PubMed  CAS  Google Scholar 

  • Gordon DA, Jamil H, Sharp D, Mullaney D, Yao Z, Gregg RE, Wetterau J (1994) Secretion of apolipoprotein B-containing lipoproteins from HeLa cells is dependent on expression of the microsomal triglyceride transfer protein and is regulated by lipid availability. Proc Natl Acad Sci USA 91:7628–7632

    Article  PubMed  CAS  Google Scholar 

  • Hsu KT, Storch J (1996) Fatty acid transfer from liver and intestinal fatty acid-binding proteins to membranes occurs by different mechanisms. J Biol Chem 271:13317–13323

    Article  PubMed  CAS  Google Scholar 

  • Hussain MM, Shi J, Dreizen P (2003) Microsomal triglyceride transfer protein and its role in apoB-lipoprotein assembly. J Lipid Res 44:22–32

    Article  PubMed  CAS  Google Scholar 

  • Karsenty J, Helal O, de la Porte PL, Beauclair-Deprez P, Martin-Elyazidi C, Planells R, Storch J, Gastaldi M (2009) I-FABP expression alters the intracellular distribution of the BODIPY C16 fatty acid analog. Mol Cell Biochem 326:97–104

    Article  PubMed  CAS  Google Scholar 

  • Kumar NS, Mansbach CM (1997) Determinants of triacylglycerol transport from the endoplasmic reticulum to the Golgi in intestine. Am J Physiol 273:G18–G30

    PubMed  CAS  Google Scholar 

  • Le Beyec J, Delers F, Jourdant F, Schreider C, Chambaz J, Cardot P, Pincon-Raymond M (1997) A complete epithelial organization of Caco-2 cells induces I-FABP and potentializes apolipoprotein gene expression. Exp Cell Res 236:311–320

    Article  PubMed  CAS  Google Scholar 

  • Levy E (1996) The genetic basis of primary disorders of intestinal fat transport. Clin Invest Med 19:317–324

    PubMed  CAS  Google Scholar 

  • Levy E, Menard D (2000) Developmental aspects of lipid and lipoprotein synthesis and secretion in human gut. Microsc Res Tech 49:363–373

    Article  PubMed  CAS  Google Scholar 

  • Levy E, Marcel Y, Deckelbaum RJ, Milne R, Lepage G, Seidman E, Bendayan M, Roy CC (1987) Intestinal apoB synthesis, lipids, and lipoproteins in chylomicron retention disease. J Lipid Res 28:1263–1274

    PubMed  CAS  Google Scholar 

  • Levy E, Loirdighi N, Thibault L, Nguyen TD, Labuda D, Delvin E, Menard D (1996) Lipid processing and lipoprotein synthesis by the developing human fetal colon. Am J Physiol 270:G813–G820

    PubMed  CAS  Google Scholar 

  • Levy E, Yotov W, Seidman EG, Garofalo C, Delvin E, Menard D (1999) Caco-2 cells and human fetal colon: a comparative analysis of their lipid transport. Biochim Biophys Acta 1439:353–362

    PubMed  CAS  Google Scholar 

  • Levy E, Menard D, Delvin E, Stan S, Mitchell G, Lambert M, Ziv E, Feoli-Fonseca JC, Seidman E (2001a) The polymorphism at codon 54 of the FABP2 gene increases fat absorption in human intestinal explants. J Biol Chem 276:39679–39684

    Article  PubMed  CAS  Google Scholar 

  • Levy E, Stan S, Garofalo C, Delvin EE, Seidman EG, Menard D (2001b) Immunolocalization, ontogeny, and regulation of microsomal triglyceride transfer protein in human fetal intestine. Am J Physiol Gastrointest Liver Physiol 280:G563–G571

    PubMed  CAS  Google Scholar 

  • Levy E, Stan S, Delvin E, Menard D, Shoulders C, Garofalo C, Slight I, Seidman E, Mayer G, Bendayan M (2002) Localization of microsomal triglyceride transfer protein in the Golgi: possible role in the assembly of chylomicrons. J Biol Chem 277:16470–16477

    Article  PubMed  CAS  Google Scholar 

  • Levy E, Menard D, Suc I, Delvin E, Marcil V, Brissette L, Thibault L, Bendayan M (2004) Ontogeny, immunolocalisation, distribution and function of SR-BI in the human intestine. J Cell Sci 117:327–337

    Article  PubMed  CAS  Google Scholar 

  • Liao W, Chan L (2000) Apolipoprotein B, a paradigm for proteins regulated by intracellular degradation, does not undergo intracellular degradation in CaCo2 cells. J Biol Chem 275:3950–3956

    Article  PubMed  CAS  Google Scholar 

  • Lowe JB, Sacchettini JC, Laposata M, McQuillan JJ, Gordon JI (1987) Expression of rat intestinal fatty acid-binding protein in Escherichia coli. Purification and comparison of ligand binding characteristics with that of Escherichia coli-derived rat liver fatty acid-binding protein. J Biol Chem 262:5931–5937

    PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Marcil V, Delvin E, Seidman E, Poitras L, Zoltowska M, Garofalo C, Levy E (2002) Modulation of lipid synthesis, apolipoprotein biogenesis, and lipoprotein assembly by butyrate. Am J Physiol Gastrointest Liver Physiol 283:G340–G346

    PubMed  CAS  Google Scholar 

  • Montoudis A, Delvin E, Menard D, Beaulieu JF, Jean D, Tremblay E, Bendayan M, Levy E (2006) Intestinal-fatty acid binding protein and lipid transport in human intestinal epithelial cells. Biochem Biophys Res Commun 339:248–254

    Article  PubMed  CAS  Google Scholar 

  • Montoudis A, Seidman E, Boudreau F, Beaulieu JF, Menard D, Elchebly M, Mailhot G, Sane AT, Lambert M, Delvin E, Levy E (2008) Intestinal fatty acid binding protein regulates mitochondrion beta-oxidation and cholesterol uptake. J Lipid Res 49:961–972

    Article  PubMed  CAS  Google Scholar 

  • Muga A, Cistola DP, Mantsch HH (1993) A comparative study of the conformational properties of Escherichia coli-derived rat intestinal and liver fatty acid binding proteins. Biochim Biophys Acta 1162:291–296

    PubMed  CAS  Google Scholar 

  • Murphy EJ, Prows DR, Stiles T, Schroeder F (2000) Liver and intestinal fatty acid-binding protein expression increases phospholipid content and alters phospholipid fatty acid composition in L-cell fibroblasts. Lipids 35:729–738

    Article  PubMed  CAS  Google Scholar 

  • Nemecz G, Jefferson JR, Schroeder F (1991) Polyene fatty acid interactions with recombinant intestinal and liver fatty acid-binding proteins. Spectroscopic studies. J Biol Chem 266:17112–17123

    PubMed  CAS  Google Scholar 

  • Ockner RK, Manning JA (1974) Fatty acid-binding protein in small intestine. Identification, isolation, and evidence for its role in cellular fatty acid transport. J Clin Invest 54:326–338

    Article  PubMed  CAS  Google Scholar 

  • Ockner RK, Manning JA, Poppenhausen RB, Ho WK (1972) A binding protein for fatty acids in cytosol of intestinal mucosa, liver, myocardium, and other tissues. Science 177:56–58

    Article  PubMed  CAS  Google Scholar 

  • Pelsers MM, Morovat A, Alexander GJ, Hermens WT, Trull AK, Glatz JF (2002) Liver fatty acid-binding protein as a sensitive serum marker of acute hepatocellular damage in liver transplant recipients. Clin Chem 48:2055–2057

    PubMed  CAS  Google Scholar 

  • Phan CT, Tso P (2001) Intestinal lipid absorption and transport. Front Biosci 6:D299–D319

    Article  PubMed  CAS  Google Scholar 

  • Poirier H, Niot I, Degrace P, Monnot MC, Bernard A, Besnard P (1997) Fatty acid regulation of fatty acid-binding protein expression in the small intestine. Am J Physiol 273:G289–G295

    PubMed  CAS  Google Scholar 

  • Rubin DC, Ong DE, Gordon JI (1989) Cellular differentiation in the emerging fetal rat small intestinal epithelium: mosaic patterns of gene expression. Proc Natl Acad Sci USA 86:1278–1282

    Article  PubMed  CAS  Google Scholar 

  • Schmidt GH, Winton DJ, Ponder BA (1988) Development of the pattern of cell renewal in the crypt-villus unit of chimaeric mouse small intestine. Development 103:785–790

    PubMed  CAS  Google Scholar 

  • Shields HM, Bates ML, Bass NM, Best CJ, Alpers DH, Ockner RK (1986) Light microscopic immunocytochemical localization of hepatic and intestinal types of fatty acid-binding proteins in rat small intestine. J Lipid Res 27:549–557

    PubMed  CAS  Google Scholar 

  • Simon TC, Roth KA, Gordon JI (1993) Use of transgenic mice to map cis-acting elements in the liver fatty acid-binding protein gene (Fabpl) that regulate its cell lineage-specific, differentiation-dependent, and spatial patterns of expression in the gut epithelium and in the liver acinus. J Biol Chem 268:18345–18358

    PubMed  CAS  Google Scholar 

  • Suzuki T, Ono T (1988) Ontogeny of hepatic fatty acid-binding protein immunoreactivity in human liver and intestinal tract. Acta Pathol Jpn 38:979–987

    PubMed  CAS  Google Scholar 

  • Suzuki T, Hitomi M, Ono T (1988) Immunohistochemical distribution of hepatic fatty acid-binding protein in rat and human alimentary tract. J Histochem Cytochem 36:349–357

    PubMed  CAS  Google Scholar 

  • Sweetser DA, Birkenmeier EH, Klisak IJ, Zollman S, Sparkes RS, Mohandas T, Lusis AJ, Gordon JI (1987) The human and rodent intestinal fatty acid binding protein genes. A comparative analysis of their structure, expression, and linkage relationships. J Biol Chem 262:16060–16071

    PubMed  CAS  Google Scholar 

  • Sweetser DA, Hauft SM, Hoppe PC, Birkenmeier EH, Gordon JI (1988) Transgenic mice containing intestinal fatty acid-binding protein-human growth hormone fusion genes exhibit correct regional and cell-specific expression of the reporter gene in their small intestine. Proc Natl Acad Sci USA 85:9611–9615

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Odani S, Ono T (1982) Primary structure of rat liver Z-protein. A low-Mr cytosol protein that binds sterols, fatty acids and other small molecules. FEBS Lett 140:63–66

    Article  PubMed  CAS  Google Scholar 

  • Vassileva G, Huwyler L, Poirier K, Agellon LB, Toth MJ (2000) The intestinal fatty acid binding protein is not essential for dietary fat absorption in mice. FASEB J 14:2040–2046

    Article  PubMed  CAS  Google Scholar 

  • Velkov T, Chuang S, Wielens J, Sakellaris H, Charman WN, Porter CJ, Scanlon MJ (2005) The interaction of lipophilic drugs with intestinal fatty acid-binding protein. J Biol Chem 280:17769–17776

    Article  PubMed  CAS  Google Scholar 

  • Wetterau JR, Aggerbeck LP, Bouma ME, Eisenberg C, Munck A, Hermier M, Schmitz J, Gay G, Rader DJ, Gregg RE (1992) Absence of microsomal triglyceride transfer protein in individuals with abetalipoproteinemia. Science 258:999–1001

    Article  PubMed  CAS  Google Scholar 

  • Yao Z, Tran K, McLeod RS (1997) Intracellular degradation of newly synthesized apolipoprotein B. J Lipid Res 38:1937–1953

    PubMed  CAS  Google Scholar 

  • Young SG, Hubl ST, Chappell DA, Smith RS, Claiborne F, Snyder SM, Terdiman JF (1989) Familial hypobetalipoproteinemia associated with a mutant species of apolipoprotein B (B-46). N Engl J Med 320:1604–1610

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Canadian Institutes of Health Research (MOP 49433) and (MOP 10584). The authors thank Schohraya Spahis for her expert technical assistance and Diane Gingras for her involvement in the electron microscopy studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emile Levy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levy, E., Ménard, D., Delvin, E. et al. Localization, function and regulation of the two intestinal fatty acid-binding protein types. Histochem Cell Biol 132, 351–367 (2009). https://doi.org/10.1007/s00418-009-0608-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-009-0608-y

Keywords

Navigation