Skip to main content
Log in

Expression of cGMP signaling elements in the Grueneberg ganglion

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The Grueneberg ganglion (GG) is a cluster of neurons localized to the vestibule of the anterior nasal cavity. Based on axonal projections to the olfactory bulb of the brain, as well as expression of olfactory receptors and the olfactory marker protein, it is considered a chemosensory subsystem. Recently, it was observed that in mice, GG neurons respond to cool ambient temperatures. In mammals, coolness-induced responses in highly specialized neuronal cells are supposed to rely on the ion channel TRPM8, whereas in thermosensory neurons of the nematode worm Caenorhabditis elegans, detection of environmental temperature is mainly mediated by cyclic guanosine monophosphate (cGMP) pathways, in which cGMP is generated by transmembrane guanylyl cyclases. To unravel the molecular mechanisms underlying coolness-induced responses in GG neurons, potential expression of TRPM8 in the murine GG was investigated; however, no evidence was found that this ion channel is present in the GG. By contrast, a substantial number of GG neurons was observed to express the transmembrane guanylyl cyclase subtype GC-G. In the nose, GC-G expression appears to be confined to the GG since it was not detectable in other nasal compartments. In the GG, coolness-stimulated responses are only observed in neurons characterized by the expression of the olfactory receptor V2r83. Interestingly, expression of GC-G in the GG was found in this V2r83-positive subpopulation but not in other GG neurons. In addition to GC-G, V2r83-positive GG cells also co-express the phosphodiesterase PDE2A. Thus, in summary, coolness-sensitive V2r83-expressing GG neurons are endowed with a cGMP cascade which might underlie thermosensitivity of these cells, similar to the cGMP pathway mediating thermosensation in neurons of C. elegans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

CAII:

Carbonic anhydrase subtype II

cGMP:

Cyclic guanosin monophosphate

DAPI:

4′,6-Diamidino-2-phenylindole

GG:

Grueneberg ganglion

Gucy2:

Transmembrane guanylyl cyclase

MOE:

Main olfactory epithelium

OB:

Olfactory bulb

OMP:

Olfactory marker protein

OSNs:

Olfactory sensory neurons

PDE:

Phosphodiesterase

RT-PCR:

Reverse transcriptase polymerase chain reaction

TAAR:

Trace amine-associated receptor

TRP:

Transient receptor potential

VNO:

Vomeronasal organ

References

  • Abe J, Hosokawa H, Okazawa M, Kandachi M, Sawada Y, Yamanaka K, Matsumura K, Kobayashi S (2005) TRPM8 protein localization in trigeminal ganglion and taste papillae. Brain Res Mol Brain Res 136:91–98

    Article  PubMed  CAS  Google Scholar 

  • Bargmann CI (2006) Chemosensation in C. elegans. In: The C. elegans Research Community (eds) WormBook, doi:10.1895/wormbook.1.123.1, http://www.wormbook.org

  • Bautista DM, Siemens J, Glazer JM, Tsuruda PR, Basbaum AI, Stucky CL, Jordt SE, Julius D (2007) The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 448:204–208

    Article  PubMed  CAS  Google Scholar 

  • Breer H, Fleischer J, Strotmann J (2006) The sense of smell: multiple olfactory subsystems. Cell Mol Life Sci 63:1465–1475

    Article  PubMed  CAS  Google Scholar 

  • Coburn CM, Bargmann CI (1996) A putative cyclic nucleotide-gated channel is required for sensory development and function in C. elegans. Neuron 17:695–706

    Article  PubMed  CAS  Google Scholar 

  • Colburn RW, Lubin ML, Stone DJ Jr, Wang Y, Lawrence D, D’Andrea MR, Brandt MR, Liu Y, Flores CM, Qin N (2007) Attenuated cold sensitivity in TRPM8 null mice. Neuron 54:379–386

    Article  PubMed  CAS  Google Scholar 

  • Daniels RL, McKemy DD (2007) Mice left out in the cold: commentary on the phenotype of TRPM8-nulls. Mol Pain 3:23

    Article  PubMed  CAS  Google Scholar 

  • Dhaka A, Murray AN, Mathur J, Earley TJ, Petrus MJ, Patapoutian A (2007) TRPM8 is required for cold sensation in mice. Neuron 54:371–378

    Article  PubMed  CAS  Google Scholar 

  • Duda T, Sharma RK (2008) ONE-GC membrane guanylate cyclase, a trimodal odorant signal transducer. Biochem Biophys Res Commun 367:440–445

    Article  PubMed  CAS  Google Scholar 

  • Fleischer J, Hass N, Schwarzenbacher K, Besser S, Breer H (2006a) A novel population of neuronal cells expressing the olfactory marker protein (OMP) in the anterior/dorsal region of the nasal cavity. Histochem Cell Biol 125:337–349

    Article  PubMed  CAS  Google Scholar 

  • Fleischer J, Schwarzenbacher K, Besser S, Hass N, Breer H (2006b) Olfactory receptors and signalling elements in the Grueneberg ganglion. J Neurochem 98:543–554

    Article  PubMed  CAS  Google Scholar 

  • Fleischer J, Schwarzenbacher K, Breer H (2007) Expression of trace amine-associated receptors in the Grueneberg ganglion. Chem Senses 32:623–631

    Article  PubMed  CAS  Google Scholar 

  • Fuss SH, Omura M, Mombaerts P (2005) The Grueneberg ganglion of the mouse projects axons to glomeruli in the olfactory bulb. Eur J NeuroSci 22:2649–2664

    Article  PubMed  Google Scholar 

  • Grüneberg H (1973) A ganglion probably belonging to the N. terminalis system in the nasal mucosa of the mouse. Z Anat Entwicklungsgesch 140:39–52

    Article  PubMed  Google Scholar 

  • Hensel H (1981) Thermoreception and temperature regulation. Monogr Physiol Soc 38:1–321

    PubMed  CAS  Google Scholar 

  • Hu J, Zhong C, Ding C, Chi Q, Walz A, Mombaerts P, Matsunami H, Luo M (2007) Detection of near-atmospheric concentrations of CO2 by an olfactory subsystem in the mouse. Science 317:953–957

    Article  PubMed  CAS  Google Scholar 

  • Inada H, Ito H, Satterlee J, Sengupta P, Matsumoto K, Mori I (2006) Identification of guanylyl cyclases that function in thermosensory neurons of Caenorhabditis elegans. Genetics 172:2239–2252

    Article  PubMed  CAS  Google Scholar 

  • Juilfs DM, Fülle HJ, Zhao AZ, Houslay MD, Garbers DL, Beavo JA (1997) A subset of olfactory neurons that selectively express cGMP-stimulated phosphodiesterase (PDE2) and guanylyl cyclase-D define a unique olfactory signal transduction pathway. Proc Natl Acad Sci USA 94:3388–3395

    Article  PubMed  CAS  Google Scholar 

  • Kimoto H, Haga S, Sato K, Touhara K (2005) Sex-specific peptides from exocrine glands stimulate mouse vomeronasal sensory neurons. Nature 437:898–901

    Article  PubMed  CAS  Google Scholar 

  • Komatsu H, Mori I, Rhee JS, Akaike N, Ohshima Y (1996) Mutations in a cyclic nucleotide-gated channel lead to abnormal thermosensation and chemosensation in C. elegans. Neuron 17:707–718

    Article  PubMed  CAS  Google Scholar 

  • Koos DS, Fraser SE (2005) The Grueneberg ganglion projects to the olfactory bulb. Neuroreport 16:1929–1932

    Article  PubMed  Google Scholar 

  • Kuhara A, Okumura M, Kimata T, Tanizawa Y, Takano R, Kimura KD, Inada H, Matsumoto K, Mori I (2008) Temperature sensing by an olfactory neuron in a circuit controlling behavior of C. elegans. Science 320:803–807

    Article  PubMed  CAS  Google Scholar 

  • Kuhn M (2003) Structure, regulation, and function of mammalian membrane guanylyl cyclase receptors, with a focus on guanylyl cyclase-A. Circ Res 93:700–709

    Article  PubMed  CAS  Google Scholar 

  • Kuhn M, Ng CK, Su YH, Kilić A, Mitko D, Bien-Ly N, Kömüves LG, Yang RB (2004) Identification of an orphan guanylate cyclase receptor selectively expressed in mouse testis. Biochem J 379:385–393

    Article  PubMed  CAS  Google Scholar 

  • Leinders-Zufall T, Brennan P, Widmayer P, Chandramani P, Maul-Pavicic A, Jäger M, Li XH, Breer H, Zufall F, Boehm T (2004) MHC class I peptides as chemosensory signals in the vomeronasal organ. Science 306:1033–1037

    Article  PubMed  CAS  Google Scholar 

  • Leinders-Zufall T, Cockerham RE, Michalakis S, Biel M, Garbers DL, Reed RR, Zufall F, Munger SD (2007) Contribution of the receptor guanylyl cyclase GC-D to chemosensory function in the olfactory epithelium. Proc Natl Acad Sci USA 104:14507–14512

    Article  PubMed  CAS  Google Scholar 

  • L’Etoile ND, Bargmann CI (2000) Olfaction and odor discrimination are mediated by the C. elegans guanylyl cyclase ODR-1. Neuron 25:575–586

    Article  PubMed  CAS  Google Scholar 

  • Lovejoy DA, Hewett-Emmett D, Porter CA, Cepoi D, Sheffield A, Vale WW, Tashian RE (1998) Evolutionarily conserved, “acatalytic” carbonic anhydrase-related protein XI contains a sequence motif present in the neuropeptide sauvagine: the human CA-RP XI gene (CA11) is embedded between the secretor gene cluster and the DBP gene at 19q13.3. Genomics 54:484–493

    Article  PubMed  CAS  Google Scholar 

  • Ma M (2007) Encoding olfactory signals via multiple chemosensory systems. Crit Rev Biochem Mol Biol 42:463–480

    Article  PubMed  CAS  Google Scholar 

  • Mamasuew K, Breer H, Fleischer J (2008) Grueneberg ganglion neurons respond to cool ambient temperatures. Eur J Neurosci

  • McKemy DD, Neuhausser WM, Julius D (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416:52–58

    Article  PubMed  CAS  Google Scholar 

  • Mori I, Ohshima Y (1995) Neural regulation of thermotaxis in Caenorhabditis elegans. Nature 376:344–348

    Article  PubMed  CAS  Google Scholar 

  • Omori K, Kotera J (2007) Overview of PDEs and their regulation. Circ Res 100:309–327

    Article  PubMed  CAS  Google Scholar 

  • Patapoutian A, Peier AM, Story GM, Viswanath V (2003) ThermoTRP channels and beyond: mechanisms of temperature sensation. Nat Rev Neurosci 4:529–539

    Article  PubMed  CAS  Google Scholar 

  • Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, Earley TJ, Dragoni I, McIntyre P, Bevan S, Patapoutian A (2002) A TRP channel that senses cold stimuli and menthol. Cell 108:705–715

    Article  PubMed  CAS  Google Scholar 

  • Ring G, Mezza RC, Schwob JE (1997) Immunohistochemical identification of discrete subsets of rat olfactory neurons and the glomeruli that they innervate. J Comp Neurol 388(3):415–434

    Article  PubMed  CAS  Google Scholar 

  • Roppolo D, Ribaud V, Jungo VP, Lüscher C, Rodriguez I (2006) Projection of the Gruneberg ganglion to the mouse olfactory bulb. Eur J NeuroSci 23:2887–2894

    Article  PubMed  Google Scholar 

  • Schulz S, Wedel BJ, Matthews A, Garbers DL (1998) The cloning and expression of a new guanylyl cyclase orphan receptor. J Biol Chem 273:1032–1037

    Article  PubMed  CAS  Google Scholar 

  • Storan MJ, Key B (2006) Septal organ of Gruneberg is part of the olfactory system. J Comp Neurol 494:834–844

    Article  PubMed  Google Scholar 

  • Tominaga M, Caterina MJ (2004) Thermosensation and pain. J Neurobiol 61:3–12

    Article  PubMed  Google Scholar 

  • Walz A, Feinstein P, Khan M, Mombaerts P (2007) Axonal wiring of guanylate cyclase-D-expressing olfactory neurons is dependent on neuropilin 2 and semaphorin 3F. Development 134:4063–4072

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Woolf CJ (2005) Pain TRPs. Neuron 46:9–12

    Article  PubMed  CAS  Google Scholar 

  • Wedel BJ, Garbers DL (1998) Guanylyl cyclases: approaching year thirty. Trends Endocrinol Metab 9:213–219

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Bela Zimmer and Roman Weber for excellent technical assistance. We are indebted to Karin Schwarzenbacher for helpful discussion and critical comments on the manuscript. This work was supported by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joerg Fleischer.

Additional information

J. Fleischer and K. Mamasuew contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

418_2008_514_MOESM1_ESM.doc

Supplemental Fig. 1 Position of OMP-positive GG neurons in the anterior nasal region. A Schematic drawing representing a sagittal section through a mouse head (adapted from Fleischer et al. 2007). The localization of the GG, the VNO, the MOE, and the OB is given. The axonal projections of GG neurons to the OB are indicated. The broken line denotes the coronal section plane shown in B-C. B Coronal section through the anterior nasal region of a neonatal mouse hybridized with an OMP-specific antisense riboprobe. The OMP-expressing GG neurons are situated between the nasal roof, the nasal cavity, and the septum. C Higher magnification of the boxed area in B. Scale bars: B = 200 μm; C = 50 μm (DOC 21794 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fleischer, J., Mamasuew, K. & Breer, H. Expression of cGMP signaling elements in the Grueneberg ganglion. Histochem Cell Biol 131, 75–88 (2009). https://doi.org/10.1007/s00418-008-0514-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-008-0514-8

Keywords

Navigation