Histochemistry and Cell Biology

, Volume 130, Issue 3, pp 447–463

Virtual microscopy as an enabler of automated/quantitative assessment of protein expression in TMAs

  • Catherine Conway
  • Lynne Dobson
  • Anthony O’Grady
  • Elaine Kay
  • Sean Costello
  • Daniel O’Shea
Review

Abstract

Tissue Microarrays facilitate high-throughput immuohistochemistry; however, there are key bottlenecks apparent in their analysis, particularly when conducting microscope-based manual reviews. Traditionally Tissue Microarray assessments were performed using a microscope where results were either transcribed or dictated and subsequently entered into flat-file spreadsheets. This process is labour intensive, prone to error and negates the advantages of the high-throughput Tissue Microarray format. In addition, human interpretations of staining intensity parameters are highly subjective and therefore prone to inter- and intra-observer variability. The advent of Virtual Slides has permitted the review of tissue slides across the Internet. In addition, this new technology enables the creation of software solutions to assist in the manual and automated review of Tissue Microarrays, through the use of computer aided image analysis. There are numerous academically developed and commercially available applications which assist in Tissue Microarray reviews; functionality of these systems range in complexity and application domains. The review which follows describes these systems and outlines technical considerations to be assessed when deciding on a Tissue Microarray workflow solution.

Keywords

Image analysis Tissue Microarrays Immunohistochemistry Virtual Slides 

References

  1. Al Kuraya K, Simon R, Sauter G (2004) Tissue microarrays for high-throughput molecular pathology. Ann Saudi Med 24:169–174PubMedGoogle Scholar
  2. Aperio-Technologies (2008) Line scanning versus tile scanning. Aperio-Technologies, Inc., VistaGoogle Scholar
  3. Bartlett J, Mallon E, Cooke T (2003) The clinical evaluation of HER-2 status: which test to use? J Pathol 199:411–417PubMedCrossRefGoogle Scholar
  4. Berman JJ, Edgerton ME, Friedman BA (2003) The tissue microarray data exchange specification: a community-based, open source tool for sharing tissue microarray data. BMC Med Inform Decis Mak 3:5PubMedCrossRefGoogle Scholar
  5. Braunschweig T, Chung JY, Hewitt SM (2004) Perspectives in tissue microarrays. Comb Chem High Throughput Screen 7:575–585PubMedGoogle Scholar
  6. Brennan DJ, Rexhepaj E, O’Brien SL, Mcsherry E, O’Connor DP, Fagan A, Culhane AC, Higgins DG, Jirstrom K, Millikan RC, Landberg G, Duffy MJ, Hewitt SM, Gallagher WM (2008) Altered cytoplasmic-to-nuclear ratio of survivin is a prognostic indicator in breast cancer. Clin Cancer Res 14:2681–2689PubMedCrossRefGoogle Scholar
  7. Bubendorf L, Nocito A, Moch H, Sauter G (2001) Tissue microarray (TMA) technology: miniaturized pathology archives for high-throughput in situ studies. J Pathol 195:72–79PubMedCrossRefGoogle Scholar
  8. Camozzi C, Razvi E (2004) Tissue: microarrays: facilitating drug research. Genet Eng News 24:30–39Google Scholar
  9. Camp RL, Divito KA (2005) Tissue Microarrays—automated analysis and future directions. Breast Cancer Online 8Google Scholar
  10. Camp RL, Chung GG, Rimm DL (2002) Automated subcellular localization and quantification of protein expression in tissue microarrays. Nat Med 8:1323–1327PubMedCrossRefGoogle Scholar
  11. Camp RL, Dolled-Filhart M, King BL, Rimm DL (2003) Quantitative analysis of breast cancer tissue microarrays shows that both high and normal levels of HER2 expression are associated with poor outcome. Cancer Res 63:1445–1448PubMedGoogle Scholar
  12. Camp RL, Dolled-Filhart M, Rimm DL (2004) X-tile: a new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization. Clin Cancer Res 10:7252–7259PubMedCrossRefGoogle Scholar
  13. Carmona R, Macias D, Guadix JA, Portillo V, Perez-Pomares JM, Munoz-Chapuli R (2007) A simple technique of image analysis for specific nuclear immunolocalization of proteins. J Microsc 225:96–99PubMedCrossRefGoogle Scholar
  14. Conway CM, O’Shea D, O’Brien S, Lawler DK, Dodrill GD, O’Grady A, Barrett H, Gulmann C, O’Driscoll L, Gallagher WM, Kay EW, O’Shea DG (2006) The development and validation of the Virtual Tissue Matrix, a software application that facilitates the review of tissue microarrays on line. BMC Bioinformatics 7:256PubMedCrossRefGoogle Scholar
  15. Costello SS, Johnston DJ, Dervan PA, O’Shea DG (2003) Development and evaluation of the virtual pathology slide: a new tool in telepathology. J Med Internet Res 5:e11PubMedCrossRefGoogle Scholar
  16. Cregger M, Berger AJ, Rimm DL (2006) Immunohistochemistry and quantitative analysis of protein expression. Arch Pathol Lab Med 130:1026–1030PubMedGoogle Scholar
  17. Cross SS, Dennis T, Start RD (2002) Telepathology: current status and future prospects in diagnostic histopathology. Histopathology 41:91–109PubMedCrossRefGoogle Scholar
  18. DE MARZO AM (2003) Advancing practice, instruction, and innovation through informatics (APIII 2007) conference. http://arpa.allenpress.com/arpaonline/?request=getdocument
  19. Divito KA, Berger AJ, Camp RL, Dolled-Filhart M, Rimm DL, Kluger HM (2004) Automated quantitative analysis of tissue microarrays reveals an association between high Bcl-2 expression and improved outcome in melanoma. Cancer Res 64:8773–8777PubMedCrossRefGoogle Scholar
  20. Dolled-Filhart M, Mccabe A, Giltnane J, Cregger M, Camp RL, Rimm DL (2006) Quantitative in situ analysis of beta-catenin expression in breast cancer shows decreased expression is associated with poor outcome. Cancer Res 66:5487–5494PubMedCrossRefGoogle Scholar
  21. Ellis IO, Dowsett M, Bartlett J, Walker R, Cooke T, Gullick W, Gusterson B, Mallon E, Lee PB (2000) Recommendations for HER2 testing in the UK. J Clin Pathol 53:890–892PubMedCrossRefGoogle Scholar
  22. Ellis IO, Bartlett J, Dowsett M, Humphreys S, Jasani B, Miller K, Pinder SE, Rhodes A, Walker R (2004) Best Practice No 176: updated recommendations for HER2 testing in the UK. J Clin Pathol 57:233–237PubMedCrossRefGoogle Scholar
  23. Faith DA, Isaacs WB, Morgan JD, Fedor HL, Hicks JL, Mangold LA, Walsh PC, Partin AW, Platz EA, Luo J, De Marzo AM (2004) Trefoil factor 3 overexpression in prostatic carcinoma: prognostic importance using tissue microarrays. Prostate 61:215–227PubMedCrossRefGoogle Scholar
  24. Fejzo MS, Slamon DJ (2001) Frozen tumor tissue microarray technology for analysis of tumor RNA, DNA, and proteins. Am J Pathol 159:1645–1650Google Scholar
  25. Francisco JS, Moraes HP, Dias EP (2004) Evaluation of the Image-Pro Plus 4.5 software for automatic counting of labeled nuclei by PCNA immunohistochemistry. Braz Oral Res 18:100–104PubMedCrossRefGoogle Scholar
  26. Gokhale S, Rosen D, Sneige N, Diaz LK, Resetkova E, Sahin A, Liu J, Albarracin CT (2007) Assessment of two automated imaging systems in evaluating estrogen receptor status in breast carcinoma. Appl Immunohistochem Mol Morphol 15:451–455PubMedCrossRefGoogle Scholar
  27. Habib I (2005) Automated microscope slide analysis in pathology. Detection technologies, IVD Technology. http://www.devicelink.com/ivdt/archive/05/05/001.html
  28. Harigopal M, Berger AJ, Camp RL, Rimm DL, Kluger HM (2005) Automated quantitative analysis of E-cadherin expression in lymph node metastases is predictive of survival in invasive ductal breast cancer. Clin Cancer Res 11:4083–4089PubMedCrossRefGoogle Scholar
  29. Hewitt SM (2006) The application of tissue microarrays in the validation of microarray results. Methods Enzymol 410:400–415PubMedCrossRefGoogle Scholar
  30. Hicks DG, Tubbs RR (2005) Assessment of the HER2 status in breast cancer by fluorescence in situ hybridization: a technical review with interpretive guidelines. Hum Pathol 36:250–261PubMedCrossRefGoogle Scholar
  31. Hoos A, Cordon-Cardo C (2001) Tissue microarray profiling of cancer specimens and cell lines: opportunities and limitations. Lab Invest 81:1331–1338PubMedGoogle Scholar
  32. Hsi ED, Tubbs RR (2004) Guidelines for HER2 testing in the UK. J Clin Pathol 57:241–242PubMedCrossRefGoogle Scholar
  33. Johansson AC, Visse E, Widegren B, Sjogren HO, Siesjo P (2001) Computerized image analysis as a tool to quantify infiltrating leukocytes: a comparison between high- and low-magnification images. J Histochem Cytochem 49:1073–1079PubMedGoogle Scholar
  34. Joshi AS, Sharangpani GM, Porter K, Keyhani S, Morrison C, Basu AS, Gholap GA, Gholap AS, Barsky SH (2007) Semi-automated imaging system to quantitate Her-2/neu membrane receptor immunoreactivity in human breast cancer. Cytometry A 71:273–285PubMedGoogle Scholar
  35. Kallioniaemi OP, Wagner U, Kononen J, Sauter G (2001) Tissue microarray technology for high-throughput molecular profiling of cancer. Hum Mol Genet 10:657–662CrossRefGoogle Scholar
  36. Kay EW, Walsh CJ, Cassidy M, Curran B, Leader M (1994) C-erbB-2 immunostaining: problems with interpretation. J Clin Pathol 47:816–822PubMedCrossRefGoogle Scholar
  37. Kay E, O’Grady A, Morgan JM, Wozniak S, Jasani B (2004) Use of tissue microarray for interlaboratory validation of HER2 immunocytochemical and FISH testing. J Clin Pathol 57:1140–1144PubMedCrossRefGoogle Scholar
  38. Kononen J, Bubendorf L, Kallioniemi A, Barlund M, Schraml P, Leighton S, Torhorst J, Mihatsch MJ, Sauter G, Kallioniemi OP (1998) Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 4:844–847PubMedCrossRefGoogle Scholar
  39. Lacroix-Triki M, Mathoulin-Pelissier S, Ghnassia JP, Macgrogan G, Vincent-Salomon A, Brouste V, Mathieu MC, Roger P, Bibeau F, Jacquemier J, Penault-Llorca F, Arnould L (2006) High inter-observer agreement in immunohistochemical evaluation of HER-2/neu expression in breast cancer: a multicentre GEFPICS study. Eur J Cancer 42:2946–2953PubMedCrossRefGoogle Scholar
  40. Leys CM, Nomura S, Lafleur BJ, Ferrone S, Kaminishi M, Montgomery E, Goldenring JR (2007) Expression and prognostic significance of prothymosin-alpha and ERp57 in human gastric cancer. Surgery 141:41–50PubMedCrossRefGoogle Scholar
  41. Liu CL, Prapong W, Natkunam Y, Alizadeh A, Montgomery K, Gilks CB, van de Rijn M (2002) Software tools for high-throughput analysis and archiving of immunohistochemistry staining data obtained with tissue microarrays. Am J Pathol 161:1557–1565PubMedGoogle Scholar
  42. Lockal (2007) Illustration to demonstrate the Bezold effect. http://en.wikipedia.org/wiki/Image:Bezold_Effect.svg
  43. Macbeath G (2002) Protein microarrays and proteomics. Nat Genet 32(Suppl):526–532PubMedCrossRefGoogle Scholar
  44. Manley S, Mucci NR, de Marzo AM, Rubin MA (2001) Relational database structure to manage high-density tissue microarray data and images for pathology studies focusing on clinical outcome: the prostate specialized program of research excellence model. Am J Pathol 159:837–843PubMedGoogle Scholar
  45. Messersmith W, Oppenheimer D, Peralba J, Sebastiani V, Amador M, Jimeno A, Embuscado E, Hidalgo M, Iacobuzio-Donahue C (2005) Assessment of Epidermal Growth Factor Receptor (EGFR) signaling in paired colorectal cancer and normal colon tissue samples using computer-aided immunohistochemical analysis. Cancer Biol Ther 4:1381–1386PubMedCrossRefGoogle Scholar
  46. Milanes-Yearsley M, Hammond ME, Pajak TF, Cooper JS, Chang C, Griffin T, Nelson D, Laramore G, Pilepich M (2002) Tissue micro-array: a cost and time-effective method for correlative studies by regional and national cancer study groups. Mod Pathol 15:1366–1373PubMedCrossRefGoogle Scholar
  47. Moch H, Kononen T, Kallioniemi OP, Sauter G (2001) Tissue microarrays: what will they bring to molecular and anatomic pathology? Adv Anat Pathol 8:14–20PubMedCrossRefGoogle Scholar
  48. Perner S, Hofer MD, Kim R, Shah RB, Li H, Moller P, Hautmann RE, Gschwend JE, Kuefer R, Rubin MA (2007) Prostate-specific membrane antigen expression as a predictor of prostate cancer progression. Hum Pathol 38:696–701PubMedCrossRefGoogle Scholar
  49. Plodowski A, Jackson SR (2001) Vision: getting to grips with the Ebbinghaus illusion. Curr Biol 11:R304–R306PubMedCrossRefGoogle Scholar
  50. Rojo MG, Garcia GB, Mateos CP, Garcia JG, Vicente MC (2006) Critical comparison of 31 commercially available digital slide systems in pathology. Int J Surg Pathol 14:285–305PubMedCrossRefGoogle Scholar
  51. Schnitt SJ, Connolly JL, Tavassoli FA, Fechner RE, Kempson RL, Gelman R, Page DL (1992) Interobserver reproducibility in the diagnosis of ductal proliferative breast lesions using standardized criteria. Am J Surg Pathol 16:1133–1143PubMedCrossRefGoogle Scholar
  52. Shergill IS, Shergill NK, Arya M, Patel HR (2004) Tissue microarrays: a current medical research tool. Curr Med Res Opin 20:707–712PubMedCrossRefGoogle Scholar
  53. Simon R, Sauter G (2002) Tissue microarrays for miniaturized high-throughput molecular profiling of tumors. Exp Hematol 30:1365–1372PubMedCrossRefGoogle Scholar
  54. SlidePath (2008) Invent, Dublin City University, Dublin 9, Ireland. http://www.slidepath.com/
  55. Sonka M et al. (1993) Image processing analysis, and machine vision. Chapman & Hall Computing, LondonGoogle Scholar
  56. Stromberg S, Bjorklund MG, Asplund C, Skollermo A, Persson A, Wester K, Kampf C, Nilsson P, Andersson AC, Uhlen M, Kononen J, Ponten F, Asplund A (2007) A high-throughput strategy for protein profiling in cell microarrays using automated image analysis. Proteomics 7:2142–2150PubMedCrossRefGoogle Scholar
  57. Tawfik OW, Kimler BF, Davis M, Donahue JK, Persons DL, Fan F, Hagemeister S, Thomas P, Connor C, Jewell W, Fabian CJ (2006) Comparison of immunohistochemistry by automated cellular imaging system (ACIS) versus fluorescence in-situ hybridization in the evaluation of HER-2/neu expression in primary breast carcinoma. Histopathology 48:258–267PubMedCrossRefGoogle Scholar
  58. Torhorst J, Bucher C, Kononen J, Haas P, Zuber M, Kochli OR, Mross F, Dieterich H, Moch H, Mihatsch M, Kallioniemi OP, Sauter G (2001) Tissue microarrays for rapid linking of molecular changes to clinical endpoints. Am J Pathol 159:2249–2256PubMedGoogle Scholar
  59. Tubbs RR, Swain E, Pettay JD, Hicks DG (2007) An approach to the validation of novel molecular markers of breast cancer via TMA-based FISH scanning. J Mol Histol 38:141–150PubMedCrossRefGoogle Scholar
  60. Turbin DA, Leung S, Cheang MC, Kennecke HA, Montgomery KD, Mckinney S, Treaba DO, Boyd N, Goldstein LC, Badve S, Gown AM, van de Rijn M, Nielsen TO, Gilks CB, Huntsman DG (2007) Automated quantitative analysis of estrogen receptor expression in breast carcinoma does not differ from expert pathologist scoring: a tissue microarray study of 3,484 cases. Breast Cancer Res TreatGoogle Scholar
  61. Tzankov A, Went P, Zimpfer A, Dirnhofer S (2005) Tissue microarray technology: principles, pitfalls and perspectives—lessons learned from hematological malignancies. Exp Gerontol 40:737–744PubMedCrossRefGoogle Scholar
  62. Wang H, Wang H, Zhang W, Fuller GN (2002) Tissue microarrays: applications in neuropathology research, diagnosis, and education. Brain Pathol 12:95–107PubMedGoogle Scholar
  63. Wang S, Saboorian MH, Frenkel EP, Haley BB, Siddiqui MT, Gokaslan S, Wians FH Jr, Hynan L, Ashfaq R (2001) Assessment of HER-2/neu status in breast cancer. Automated Cellular Imaging System (ACIS)-assisted quantitation of immunohistochemical assay achieves high accuracy in comparison with fluorescence in situ hybridization assay as the standard. Am J Clin Pathol 116:495–503PubMedCrossRefGoogle Scholar
  64. Watanabe I (2007). Laboratory of Isao Watanabe, Visual Illusions. http://www.let.kumamoto-u.ac.jp/ihs/hum/psychology/watanabe/Watanabe-E/Illus-E/index.html
  65. Weaver DL, Krag DN, Manna EA, Ashikaga T, Harlow SP, Bauer KD (2003) Comparison of pathologist-detected and automated computer-assisted image analysis detected sentinel lymph node micrometastases in breast cancer. Mod Pathol 16:1159–1163PubMedCrossRefGoogle Scholar
  66. Wei B, Bu H, Zhu CR, Guo LX, Chen HJ, Zhao C, Zhang P, Chen DY, Tang Y, Jiang Y (2004) Interobserver reproducibility in the pathologic diagnosis of borderline ductal proliferative breast diseases. Sichuan Da Xue Xue Bao Yi Xue Ban 35:849–853PubMedGoogle Scholar
  67. Zerkowski MP, Camp RL, Burtness BA, Rimm DL, Chung GG (2007) Quantitative analysis of breast cancer tissue microarrays shows high cox-2 expression is associated with poor outcome. Cancer Invest 25:19–26PubMedCrossRefGoogle Scholar
  68. Zhang L, Wang C (2006) F-box protein Skp2: a novel transcriptional target of E2F. Oncogene 25:2615–2627PubMedCrossRefGoogle Scholar
  69. Zu Y, Steinberg SM, Campo E, Hans CP, Weisenburger DD, Braziel RM, Delabie J, Gascoyne RD, Muller-Hermlink K, Pittaluga S, Raffeld M, Chan WC, Jaffe ES (2005) Validation of tissue microarray immunohistochemistry staining and interpretation in diffuse large B-cell lymphoma. Leuk Lymphoma 46:693–701PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Catherine Conway
    • 1
  • Lynne Dobson
    • 2
  • Anthony O’Grady
    • 3
  • Elaine Kay
    • 3
  • Sean Costello
    • 1
  • Daniel O’Shea
    • 4
  1. 1.SlidePathDublinIreland
  2. 2.School of BiotechnologyDublin City UniversityDublinIreland
  3. 3.Department of HistopathologyBeaumont Hospital and Royal College of SurgeonsDublinIreland
  4. 4.Medical Informatics Group, School of BiotechnologyDublin City UniversityDublinIreland

Personalised recommendations