Skip to main content
Log in

Localized matrix metalloproteinase (MMP)-2 and MMP-9 activity in the rat ventral prostate during the first week of postnatal development

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The initial events in prostatic morphogenesis involve cell proliferation, epithelial canalization and outgrowth toward the stroma. We have hypothesized that stromal rearrangement takes place at the sites of epithelial growth and branching and that this rearrangement involves the action of gelatinases matrix metalloproteinase (MMP)-2 and MMP-9. Thus, the purpose of the present study was to characterize structural aspects of epithelial growth during the first week of postnatal development of the rat ventral prostate and to investigate the expression, localization and activity of MMP-2 and MMP-9 during this period by histological, ultrastructural and immunocytochemical analysis, in addition to gel zymography, in situ zymography and Western blotting. An increasing complexity of prostatic architeture was observed within the first postnatal week. Concurrently, the stroma became more organized and some cells differentiated into smooth muscle cells. Reticulin fibers appeared in a basket-like arrangement around both growing tips and epithelial sprouts, associated with a fainter staining for laminin. MMP-2 and MMP-9 activities were detected. MMP-2/MMP-9 expression decreased during the first week. Developing epithelial cords showed strong and difuse gelatinolytic activity. This activity coincided with the distribution of MMP-2 as determined by immunocytochemistry. On the other hand, MMP-9 was rather concentrated at the epithelial tips. These results suggest that gelatinolytic activity (with contribution of both MMP-2 and MMP-9) in the epithelium and at the epithelium–stroma interface are at least in part responsible for the tissue remodeling that allows epithelial growth and its projection into the surrounding stroma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ayala I, Baldassarre M, Caldieri G, Buccione R (2006) Invadopodia: a guided tour. Eur J Cell Biol 85:159–164

    Article  PubMed  CAS  Google Scholar 

  • Behmer AO, Tolosa EMC, Neto AGF (1976) Manual de práticas para histologia normal e patológica, 1st edn. Edart-Edusp, São Paulo, p 238

    Google Scholar 

  • Björklund M, Koivunen E (2005) Gelatinase-mediated migration and invasion of cancer cells. Biochim Biophys Acta 1755:37–69

    PubMed  Google Scholar 

  • Bok RA, Hansell EJ, Nguyen TP, Greenberg NM, McKrrow JH, Shuman MA (2003) Patterns of protease production during prostate cancer progression: proteomic evidence for cascades in a transgenic model. Prostate Cancer Prostatic Dis 6:272–280

    Article  PubMed  CAS  Google Scholar 

  • Bruni-Cardoso A, Carvalho HF (2007) Dynamics of the epithelium during canalization of the rat ventral prostate. Anat Rec 290:1223–1323

    Article  Google Scholar 

  • Carvalho HF, Vilamaior PS, Taboga SR (1997) Elastic system of the rat ventral prostate and its modifications following orchiectomy. Prostate 32:27–34

    Article  PubMed  Google Scholar 

  • Carvalho HF, Line SR (1996) Basement membrane associated changes in the rat ventral prostate following castration. Cell Biol Int 20:809–819

    Article  PubMed  Google Scholar 

  • Corbier P, Edwards DA, Roffi J (1992) The neonatal testosterone surge: a comparative study. Arch Int Physiol Biochim Biophys 100:127–131

    PubMed  CAS  Google Scholar 

  • Donjacour AA, Cunha GR (1988) The effect of androgen deprivation on branching morphogenesis in the mouse prostate. Dev Biol 128:1–14

    Article  PubMed  CAS  Google Scholar 

  • Duchossoy Y, Arnaud S, Feldblum S (2001) Matrix metalloproteinases: potential therapeutic target in spinal cord injury. Clin Chem Lab Med 39:362–367

    Article  PubMed  CAS  Google Scholar 

  • Fata JE, Werb Z, Bissell MJ (2004) Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes. Breast Cancer Res 6:1–11

    PubMed  CAS  Google Scholar 

  • Feng X, Clark RA, Galanakis D, Tonnesen MG (1999) Fibrin and collagen differentially regulate human dermal microvascular endothelial cell integrins: stabilization of alphav/beta3 mRNA by fibrin1. J Invest Dermatol 113:913–919

    Article  PubMed  CAS  Google Scholar 

  • Fukuda Y, Masuda Y, Kishi J, Hashimoto Y, Ayacuá T, Nogawa H, Nakanishi Y (1988) The role of interstitial collagens in cleft formation of mouse embryonic submandibular gland during initial branching. Development 103:259–267

    PubMed  CAS  Google Scholar 

  • Giambernardi TA, Grant GM, Taylor GP, Hay RJ, Maher VM, Mccormick JJ, Klebe RJ (1998) Overview of matrix metalloproteinase expression in cultured human cells. Matrix Biol 16:483–496

    Article  PubMed  CAS  Google Scholar 

  • Gilbert SF (2006) Developmental Biology. Sinauer Associates Inc, Sunderland

  • Grant GM, Giambernardi TA, Grant AM, Klebe RJ (1999) Overview of expression of matrix metalloproteinases (MMP-17, MMP-18, and MMP-20) in cultured human cells. Matrix Biol 18:145–148

    Article  PubMed  CAS  Google Scholar 

  • Hamilton W, Boyd J, Mossman H (1959) Human embryology. Williams and Wilkins Co, Baltimore

    Google Scholar 

  • Hangai M, Kitaya N, Xu J, Chan CK, Kim JJ, Werb Z, Ryan SJ, Brooks PC (2002) Matrix metalloproteinase-9-dependent exposure of a cryptic migratory control site in collagen is required before retinal angiogenesis. Am J Pathol 161:1429–1437

    PubMed  CAS  Google Scholar 

  • Hashimoto K, Kihira Y, Matuo Y, Usui T (1998) Expression of matrix metalloproteinase-7 and tissue inhibitor of metalloproteinase-1 in human prostate. J Urol 160:1872–1876

    Article  PubMed  CAS  Google Scholar 

  • Hayward SW, Baskin LS, Haughney PC, Cunha AR, Foster BC, Dahiya R, Prins GS, Cunha GR (1996a) Epithelial development in the rat ventral prostate, anterior prostate and seminal vesicle. Acta Anat 155:81–93

    Article  PubMed  CAS  Google Scholar 

  • Hayward SW, Baskin LS, Haughney PC, Foster BC, Cunha AR, Dahiya R, Prins GS, Cunha GR (1996b) Stromal development in the ventral prostate, anterior prostate and seminal vesicle of the rat. Acta Anat 155:94–103

    PubMed  CAS  Google Scholar 

  • Huang L, Pu Y, Alam S, Birch L, Prins GS (2004) Estrogenic regulation of signaling pathways and homeobox genes during rat prostate development. J Androl 25:330–337

    PubMed  CAS  Google Scholar 

  • Kaliski A, Maggiorella L, Cengel KA, Mathe D, Rouffiac V, Opolon P, Lassau N, Bourhis J, Deutsch E (2005) Angiogenesis and tumor growth inhibition by a matrix metalloproteinase inhibitor targeting radiation-induced invasion. Mol Cancer Ther 4:1717–1728

    Article  PubMed  CAS  Google Scholar 

  • Kheradmand F, Rishi K, Werb Z (2002) Signaling through the EGF receptor controls lung morphogenesis in part by regulating MT1-MMP-mediated activation of gelatinase A/MMP2. J Cell Sci 115:839–848

    PubMed  CAS  Google Scholar 

  • Kofoed JA, Tumilasci OR, Curbelo HM, Fernandez Lemos SM, Aarias NH, Houssay AB (1990) Effects of castration and androgens upon prostatic proteoglycans in rats. Prostate 16:93–102

    Article  PubMed  CAS  Google Scholar 

  • Lelongt B, Trugnan G, Murphy G, Ronco PM (1997) Matrix metalloproteinases MMP2 and MMP9 are produced in early stages of kidney morphogenesis but only MMP9 is required for renal organogenesis in vitro. J Cell Biol 136:1363–1373

    Article  PubMed  CAS  Google Scholar 

  • Li BY, Liao XB, Fujito A, Thrasher JB, Shen FY, Xu PY (2007) Dual androgen-response elements mediate androgen regulation of MMP-2 expression in prostate cancer cells. Asian J Androl 9:41–50

    Article  PubMed  Google Scholar 

  • Liao X, Thrasher JB, Pelling J, Holzbeierlein J, Sang QX, Li B (2003) Androgen stimulates matrix metalloproteinase-2 expression in human prostate cancer. Endocrinology 144:1656–1663

    Article  PubMed  CAS  Google Scholar 

  • Llano E, Pendas AM, Knauper V, Sorsa T, Salo T, Salido E, Murphy G, Simmer JP, Bartlett JD, Lopez-Otin C (1997) Identification and structural and functional characterization of human enamelysin (MMP-20). Biochemistry 36:15101–15108

    Article  PubMed  CAS  Google Scholar 

  • Llano E, Pendas AM, Freije JP, Nakano A, Knauper V, Murphy G, Lopez-Otin C (1999) Identification and characterization of human MT5-MMP, a new membrane-bound activator of progelatinase a overexpressed in brain tumors. Cancer Res 59:2570–2576

    PubMed  CAS  Google Scholar 

  • Lohi J, Lehti K, Valtanen H, ParksWC, Keski-Oja J (2000) Structural analysis and promoter characterization of the human membrane-type matrix metalloproteinase-1 (MT1-MMP) gene. Gene 242:75–86

    Article  PubMed  CAS  Google Scholar 

  • Marchenko GN, Strongin AY (2001) MMP-28, a new human matrix metalloproteinase with an unusual cysteine-switch sequence is widely expressed in tumors. Gene 265:87–93

    Article  PubMed  CAS  Google Scholar 

  • Matrisian LM (1990) Metalloproteinases and their inhibitors in matrix remodeling. Trends Genet 6:121–125

    Article  PubMed  CAS  Google Scholar 

  • Mott JD, Werb Z (2004) Regulation of matrix biology by matrix metalloproteinases. Curr Opin Cell Biol 16:558–564

    Article  PubMed  CAS  Google Scholar 

  • Nagakawa O, Murakami K, Yamaura T, Fujiuchi Y, Murata J, Fuse H, Saiki I (2000) Expression of membrane-type 1 matrix metalloproteinase (MT1-MMP) on prostate cancer cell lines. Cancer Lett 155:173–179

    Article  PubMed  CAS  Google Scholar 

  • Nelson CM, Vanduijn MM, Inman JL, Fletcher DA, Bissell MJ (2006) Tissue geometry determines sites of mammary branching morphogenesis in organotypic cultures. Science 314:298–300

    Article  PubMed  CAS  Google Scholar 

  • Park HI, Ni J, Gerkema FE, Liu D, Belozerov VE, Sang QX (2000) Identification and characterization of human endometase (matrix metalloproteinase-26) from endometrial tumor. J Biol Chem 275:20540–20544

    Article  PubMed  CAS  Google Scholar 

  • Pu Y, Huang L, Birch L, Prins GS (2007) Androgen regulation of prostate morphoregulatory gene expression: Fgf10-dependent and -independent pathways. Endocrinology 148:1697–1706

    Article  PubMed  CAS  Google Scholar 

  • Putz O, Schwartz CB, Kim S, LeBlanc GA, Cooper RL, Prins GS (2001) Neonatal low- and high-dose exposure to estradiol benzoate in the male rat: I. Effects on the prostate gland. Biol Reprod 65:1496–1505

    Article  PubMed  CAS  Google Scholar 

  • Risbridger GP, Almahbobi GA, Taylor RA (2005) Early prostate development and its association with late-life prostate disease. Cell Tissue Res 322:173–181

    Article  PubMed  CAS  Google Scholar 

  • Sato H, Seiki M (1993) Regulatory mechanism of 92 kDa type IV collagenase gene expression which is associated with invasiveness of tumor cells. Oncogene 8:395–405

    PubMed  CAS  Google Scholar 

  • Schedin P, Strange R, Mitrenga T, Wolfe P, Kaeck M (2000) Fibronectin fragments induce MMP activity in mouse mammary epithelial cells: evidence for a role in mammary tissue remodeling. J Cell Sci 113:795–806

    PubMed  CAS  Google Scholar 

  • Stearns ME, Wang M (1993) Type IV collagenase (M(r) 72,000) expression in human prostate: benign and malignant tissue. Cancer Res 53:878–883

    PubMed  CAS  Google Scholar 

  • Stearns M, Stearns ME (1996) Evidence for increased activated metalloproteinase 2 (MMP-2a) expression associated with human prostate cancer progression. Oncol Res 8:69–75

    PubMed  CAS  Google Scholar 

  • Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516

    Article  PubMed  CAS  Google Scholar 

  • Sugimura Y, Cunha GR, Donjacour AA (1986a) Morphogenesis of ductal networks in the mouse prostate. Biol Reprod 34:961–971

    Article  PubMed  CAS  Google Scholar 

  • Sugimura Y, Cunha GR, Donjacour AA, Bigsby RM, Brody JR (1986b) Whole-mount autoradiography study of DNA synthetic activity during postnatal development and androgen-induced regeneration in the mouse prostate. Biol Reprod 34:985–995

    Article  PubMed  CAS  Google Scholar 

  • Taboga SR, Vidal BC (2003) Collagen fibers in human prostatic lesions: histochemistry and anisotropies. J Submicrosc Cytol Pathol 35:11–16

    PubMed  CAS  Google Scholar 

  • Timms BG, Mohs TJ, Didio LJ (1994) Ductal budding and branching patterns in the developing prostate. J Urol 151:1427–1432

    PubMed  CAS  Google Scholar 

  • Timpl R (1989) Structure and biological activity of basement membrane proteins. Eur J Biochem 180:487–502

    Article  PubMed  CAS  Google Scholar 

  • Thomson AA (2001) Role of androgen and fibroblast growth factors in prostatic development. Reproduction 121:187–195

    Article  PubMed  CAS  Google Scholar 

  • Uchida K, Kanai M, Yonemura S, Ishii K, Hirokawa Y, Sugimura Y (2007) Proprotein convertases modulate budding and branching morphogenesis of rat ventral prostate. Int J Dev Biol 51:229–233

    Article  PubMed  CAS  Google Scholar 

  • Upadhyay J, Shekarriz B, Nemeth JA, Dong Z, Cummings GD, Fridman R, Sakr W, Grignon DJ, Cher ML (1999) Membrane type 1-matrix metalloproteinase (MT1-MMP) and MMP-2 immunolocalization in human prostate: change in cellular localization associated with high-grade prostatic intraepithelial neoplasia. Clin Cancer Res 5:4105–4110

    PubMed  CAS  Google Scholar 

  • Velasco G, Pendas AM, Fueyo A, Knauper V, Murphy G, Lopez-Otin C (1999) Cloning and characterization of human MMP-23, a new matrix metalloproteinase predominantly expressed in reproductive tissues and lacking conserved domains in other family members. J Biol Chem 274:4570–4576

    Article  PubMed  CAS  Google Scholar 

  • Vilamaior PS, Felisbino SL, Taboga SR, Carvalho HF (2000) Collagen fiber reorganization in the rat ventral prostate following androgen deprivation: a possible role for smooth nuscle cell. Prostate 45:253–258

    Article  PubMed  CAS  Google Scholar 

  • Vilamaior PS, Taboga SR, Carvalho HF (2006) Postnatal growth of the ventral prostate in Wistar rats: a stereological and morphometrical study. Anat Rec 288A:885–892

    Article  Google Scholar 

  • Vu TH, Werb Z (2000) Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev 14:2123–2133

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Rodriguez D, Peticlerc E, Kim JJ, Hangai M, Yuen SM, Davis GE, Brooks PC (2001) Proteolytic exposure of a cryptic site within collagen type IV is required for angiogenesis and tumor growth in vivo. J Cell Biol 154:1069–1079

    Article  PubMed  CAS  Google Scholar 

  • Westermarck J, Kahari VM (1999) Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J 13:781–792

    PubMed  CAS  Google Scholar 

  • Wiseman BS, Werb Z (2002) Stromal effects on mammary gland development and breast cancer. Science 296:1046–1049

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Steve Dore for reviewing the English version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hernandes F. Carvalho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruni-Cardoso, A., Vilamaior, P.S.L., Taboga, S.R. et al. Localized matrix metalloproteinase (MMP)-2 and MMP-9 activity in the rat ventral prostate during the first week of postnatal development. Histochem Cell Biol 129, 805–815 (2008). https://doi.org/10.1007/s00418-008-0407-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-008-0407-x

Keywords

Navigation