Skip to main content

Advertisement

Log in

H2AX foci in late S/G2- and M-phase cells after hydroxyurea- and aphidicolin-induced DNA replication stress in Vicia

  • Orig inal Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Immunocytochemistry using α-phospho-H2AX antibodies shows that hydroxyurea (HU), an inhibitor of ribonucleotide reductase, and aphidicolin (APH), an inhibitor of DNA-polymerases α and δ, may promote formation of phospho-H2AX foci in late S/G2-phase cells in root meristems of Vicia faba. Although fluorescent foci spread throughout the whole area of nucleoplasm, large phospho-H2AX aggregates in HU-treated cells allocate mainly in perinucleolar regions. A strong tendency of ATR/ATM-dependent phospho-Chk1S317 kinase to focus in analogous compartments, as opposed to phospho-Chk2T68 and to both effector kinases in APH-treated cells, may suggest that selected elements of the intra-S-phase cell cycle checkpoints share overlapping locations with DNA repair factors known to concentrate in phospho-H2AX aggregates. APH-induced phosphorylation of H2AX exhibits little or no overlap with the areas positioned close to nucleoli. Following G2-M transition of the HU- and APH-pretreated cells, altered chromatin structures are still discernible as large phospho-H2AX foci in the vicinity of chromosomes. Both in HU- and APH-treated roots, immunofluorescence analysis revealed a dominant fraction of small foci and a less frequent population of large phospho-H2AX agregates, similar to those observed in animal cells exposed to ionizing radiation. The extent of H2AX phosphorylation has been found considerably reduced in root meristem cells treated with HU and caffeine. The frequencies of phospho-H2AX foci observed during mitosis and caffeine-mediated premature chromosome condensation (PCC) suggest that there may be functional links between the checkpoint mechanisms that control genome integrity and those activities which operate throughout the unperturbed mitosis in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

APH:

Aphidicolin

DSB:

Double strand breaks

HU:

Hydroxyurea

PCC:

Premature chromosome condensation

References

  • Abraham RT (2001) Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 15:2177–2196

    Article  PubMed  CAS  Google Scholar 

  • Barbie DA, Kudlow BA, Frock R, Zhao J, Johnson BR, Dyson N, Harlow E, Kennedy BK (2004) Nuclear reorganization of mammalian DNA synthesis prior to cell cycle exit. Mol Cell Biol 24:595–607

    Article  PubMed  CAS  Google Scholar 

  • Blasina A, Price BD, Turenne GA, McGowan CH (1999) Caffeine inhibits the checkpoint kinase ATM. Curr Biol 9:1135–1138

    Article  PubMed  CAS  Google Scholar 

  • Block WD, Merkle D, Meek K, Lees-Miller SP (2004) Selective inhibition of the DNA-dependent protein kinase (DNA-PK) by the radiosensitizing agent caffeine. Nucl Ac Res 32:1967–1972

    Article  CAS  Google Scholar 

  • Boddy MN, Russell P (2001) DNA replication checkpoint. Curr Biol 11:R953–R956

    Article  PubMed  CAS  Google Scholar 

  • Carson CT, Schwartz RA, Stracker TH, Lilley CE, Lee DV, Weitzman MD (2003) The Mre11 complex is required for ATM activation and the G2/M checkpoint. EMBO J 22:6610–6620

    Article  PubMed  CAS  Google Scholar 

  • Chabes A, Thelander L (2000) Controlled protein degradation regulates ribonucleotide reductase activity in proliferating mammalian cells during the normal cell cycle and in response to DNA damage and replication blocks. J Biol Chem 275:17747–17753

    Article  PubMed  CAS  Google Scholar 

  • Chen HT, Bhandoola A, Difilippantonio MJ, Zhu J, Brown MJ, Tai X, Rogakou EP, Brotz TM, Bonner WM, Ried T, Nussenzweig A (2000) Response to RAG-mediated V(D)J cleavage by NBS1 and γ-H2AX. Science 290:1962–1964

    Article  PubMed  CAS  Google Scholar 

  • Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2:292–301

    Article  PubMed  CAS  Google Scholar 

  • Culligan KM, Tissier A, Britt AB (2004) ATR regulates a G2-phase cell-cycle checkpoint in Arabidopsis thaliana. Plant Cell 16:1091–1104

    Article  PubMed  CAS  Google Scholar 

  • Dimitrova DS, Gilbert DM (1999) The spatial position and replication timing of chromosomal domains are both established in early G1 phase. Mol Cell 4:983–993

    Article  PubMed  CAS  Google Scholar 

  • Doležel J, Číhalíková J, Weiserová J, Lucretti S (1999) Cell cycle synchronization in plant root meristems. Methods Cell Sci 21:95–107

    Article  PubMed  Google Scholar 

  • Downes CS, Bachrati CZ, Devlin SJ, Tommasino M, Cutts TJR, Watson JV, Raskó I, Johnson RT (2000) Mammalian S-phase checkpoint integrity is dependent on transformation status and purine deoxyribonucleosides. J Cell Sci 113:1089–1096

    PubMed  CAS  Google Scholar 

  • Elledge SJ (1996) Cell cycle checkpoint: preventing an identity crisis. Science 274:1664–1672

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Capetillo O, Lee A, Nussenzweig M, Nussenzweig A (2004) H2AX: the histone guardian of the genome. DNA Repair 3:959–967

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Capetillo O, Mahadevaiah SK, Celeste A, Romanienko PJ, Camerini-Otero RD, Bonner WM, Manova K, Burgoyne P, Nussenzweig A (2003) H2AX is required for chromatin remodeling and inactivation of sex chromosomes in male mouse meiosis. Dev Cell 4:497–508

    Article  PubMed  CAS  Google Scholar 

  • Friesner JD, Liu B, Culligan K, Britt AB (2005) Ionizing radiation–dependent γ-H2AX focus formation requires ataxia telangiectasia mutated and ataxia telangiectasia mutated and Rad3-related. Mol Biol Cell 16:2566–2576

    Article  PubMed  CAS  Google Scholar 

  • Garcia V, Bruchet H, Camescasse D, Granier F, Bouchez D, Tissier A (2003) AtATM is essential for meiosis and the somatic response to DNA damage in plants. Plant Cell 15:119–132

    Article  PubMed  CAS  Google Scholar 

  • Gong J, Traganos F, Darzynkiewicz Z (1995) Growth imbalance and altered expression of cyclins B1, A, E and D3 in MOLT-4 cells synchronized in the cell cycle by inhibitors of DNA replication. Cell Growth Differ 6:1485–1493

    PubMed  CAS  Google Scholar 

  • Goodarzi AA, Block WD, Lees-Miller SP (2003) The roles of ATM and ATR in DNA damage-induced cell cycle control. Prog Cell Cycle Res 5:393–411

    PubMed  Google Scholar 

  • Hays JB (2002) Arabidopsis thaliana, a versatile model system for study of eukaryotic genome-maintenance functions. DNA Repair 1:579–600

    Article  PubMed  CAS  Google Scholar 

  • Huang S (2000) Review: perinucleolar structures. J Struct Biol 129:233–240

    Article  PubMed  CAS  Google Scholar 

  • Ichijima Y, Sakasai R, Okita N, Asahina K, Mizutani S, Teraoka H (2005) Phosphorylation of histone H2AX at M phase in human cells without DNA damage response. Biochem Biophys Res Commun 336:807–812

    Article  PubMed  CAS  Google Scholar 

  • Kang J, Ferguson D, Song H, Bassing C, Eckersdorff M, Alt FW, Xu Y (2005) Functional interaction of H2AX, NBS1, and p53 in ATM-Dependent DNA damage responses and tumor suppression. Mol Cell Biol 25:661–670

    Article  PubMed  CAS  Google Scholar 

  • Kennedy BK, Barbie DA, Classon M, Dyson N, Harlow E (2000) Nuclear organization of DNA replication in primary mammalian cells. Genes Dev 14:2855–2868

    Article  PubMed  CAS  Google Scholar 

  • Kurose A, Tanaka T, Huang X, Traganos F, Darzynkiewicz Z (2006) Synchronization in the cell cycle by inhibitors of DNA replication induces histone H2AX phosphorylation: an indication of DNA damage. Cell Prolif 39:231–240

    Article  PubMed  CAS  Google Scholar 

  • Lopes M, Cotta-Ramusino C, Pellicioli A, Liberi G, Plevani P, Muzi-Falconi M, Newlon CS, Foiani M (2001) The DNA replication checkpoint response stabilizes stalled replication forks. Nature 412:557–561

    Article  PubMed  CAS  Google Scholar 

  • Lou Z, Minter-Dykhouse K, Wu X, Chen J (2003) MDC1 is coupled to activated CHK2 in mammalian DNA damage response pathways. Nature 421:957–961

    Article  PubMed  CAS  Google Scholar 

  • Luciani MG, Oehlmann M, Blow JJ (2004) Characterization of a novel ATR-dependent, Chk1-independent, intra-S-phase checkpoint that suppresses initiation of replication in Xenopus. J Cell Sci 117:6019–6030

    Article  PubMed  CAS  Google Scholar 

  • McManus KJ, Hendzel MJ (2005) ATM-dependent DNA damage-independent mitotic phosphorylation of H2AX in normally growing mammalian cells. Mol Biol Cell 16:5013–5025

    Article  PubMed  CAS  Google Scholar 

  • Moser BA, Brondello JM, Baber-Furnari B, Russell P (2000) Mechanism of caffeine-induced checkpoint override in fission yeast. Mol Cell Biol 20:4288–4294

    Article  PubMed  CAS  Google Scholar 

  • Nghiem P, Park PK, Kim Y, Vaziri C, Schreiber SL (2001) ATR inhibition selectively sensitizes G1 checkpoint deficient cells to lethal premature chromatin condensation. Proc Natl Acad Sci USA 98:9092–9097

    Article  PubMed  CAS  Google Scholar 

  • Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM (2000) A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 10:886–895

    Article  PubMed  CAS  Google Scholar 

  • Quelo A-H, Bryant JA, Verbelen J-P (2002) Endoreduplication is not inhibited but induced by aphidicolin in cultured cells of tobacco. J Exp Bot 53:669–675

    Article  PubMed  CAS  Google Scholar 

  • Quelo A-H, Verbelen J-P (2004) Bromodeoxyuridine DNA fiber technology in plants: replication origins and DNA synthesis in tobacco BY-2 cells under prolonged treatment with aphidicolin. Protoplasma 223:197–202

    Article  PubMed  CAS  Google Scholar 

  • Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273:5858–5868

    Article  PubMed  CAS  Google Scholar 

  • Rogakou EP, Boon C, Redon C, Bonner WM (1999) Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol 146:905–915

    Article  PubMed  CAS  Google Scholar 

  • Rybaczek D, Maszewski J (2007a) Phosphorylation of H2AX histones in response to double-strand break and induction of premature chromatin condensation in hydroxyurea-treated root meristem cells of Raphanus sativus, Vicia faba, and Allium porrum. Protoplasma 230:31–39

    Article  PubMed  CAS  Google Scholar 

  • Rybaczek D, Maszewski J (2007b) Induction of foci of phosphorylated H2AX histones and premature chromosome condensation after DNA damage in root meristem cells of Vicia faba. Biol Plant 51:443–450

    Article  CAS  Google Scholar 

  • Sala F, Parisi B, Burroni D, Amileni AR, Pedrali-Noy G, Spadari S (1980) Specific and reversible inhibition by aphidicolin in the alpha-like DNA polymerase of plant cells. FEBS Lett 117:93–98

    Article  PubMed  CAS  Google Scholar 

  • Sarkaria JN, Busby EC, Tibbetts RS, Roos P, Taya Y, Karnitz LM, Abraham RT (1999) Inhibition of ATM and ATR kinase activities by the radiosensitizing agent caffeine. Cancer Res 59:4375–4382

    PubMed  CAS  Google Scholar 

  • Sen R, Ghosh S (1998) Induction of premature mitosis in S-blocked onion cells. Cell Biol Int 22:867–874

    Article  PubMed  CAS  Google Scholar 

  • Shiloh Y, Kastan MB (2001) ATM: genome stability, neuronal development, and cancer cross paths. Adv Cancer Res 83:209–254

    Article  PubMed  CAS  Google Scholar 

  • Takai H, Smogorzewska A, de Lange T (2003) DNA damage foci at dysfunctional telomeres. Curr Biol 13:1549–1556

    Article  PubMed  CAS  Google Scholar 

  • Tercero JA, Diffley JF (2001) Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint. Nature 412:553–557

    Article  PubMed  CAS  Google Scholar 

  • Urbani L, Sherwood SW, Schimke RT (1995) Dissociation of nuclear and cytoplasmic cell cycle progression by drugs employed in cell synchronization. Exp Cell Res 219:159–168

    Article  PubMed  CAS  Google Scholar 

  • Wang S-W, Norbury C, Harris AL, Toda T (1999) Caffeine can override the S-M checkpoint in fission yeast. J Cell Sci 112:927–937

    PubMed  CAS  Google Scholar 

  • Ward IM, Chen J (2001) Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. J Biol Chem 51:47759–47762

    Google Scholar 

  • Ward I, Minn K, Chen J (2004) UV-induced ATR activation requires replicational stress. J Biol Chem 279:9677–9680

    Article  PubMed  CAS  Google Scholar 

  • Weinert T (1998) DNA damage checkpoints update: getting molecular. Curr Opin Genet Dev 8:185–193

    Article  PubMed  CAS  Google Scholar 

  • Zhou B-BS, Elledge SJ (2000) The DNA damage response: putting checkpoints in perspective. Nature 408:433–439

    Article  PubMed  CAS  Google Scholar 

  • Zou L, Elledge SJ (2003) Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300:1542–1548

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Committee of Scientific Research, grant 2PO4C 044 27.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorota Rybaczek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rybaczek, D., Bodys, A. & Maszewski, J. H2AX foci in late S/G2- and M-phase cells after hydroxyurea- and aphidicolin-induced DNA replication stress in Vicia . Histochem Cell Biol 128, 227–241 (2007). https://doi.org/10.1007/s00418-007-0311-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-007-0311-9

Keywords

Navigation