Skip to main content
Log in

Cytotoxic oxysterols induce caspase-independent myelin figure formation and caspase-dependent polar lipid accumulation

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Oxysterols, mainly those oxidized at the C7 position, induce a complex mode of cell death exhibiting some characteristics of apoptosis associated with a rapid induction of lipid rich multilamellar cytoplasmic structures (myelin figures) observed in various pathologies including atherosclerosis. The aim of this study was to determine the relationships between myelin figure formation, cell death, and lipid accumulation in various cell lines (U937, THP-1, MCF-7 [caspase-3 deficient], A7R5) treated either with oxysterols (7-ketocholesterol [7KC], 7β-hydroxycholesterol, cholesterol-5α,6α-epoxide, cholesterol-5β,6β-epoxide, 25-hydroxycholesterol) or cytotoxic drugs (etoposide, daunorubicin, tunicamycin, rapamycin). Cell death was assessed by the measurement of cellular permeability with propidium iodide, characterization of the morphological aspect of the nuclei with Hoechst 33342, and identification of myelin figures by transmission electron microscopy. Nile Red staining (distinguishing neutral and polar lipids) was used to identify lipid content by flow cytometry and spectral imaging microscopy. Whatever the cells considered, myelin figures were only observed with cytotoxic oxysterols (7KC, 7β-hydroxycholesterol, cholesterol-5β, 6β-epoxide), and their formation was not inhibited by the broad spectrum caspase inhibitor z-VAD-fmk. When U937 cells were treated with oxysterols or cytotoxic drugs, polar lipid accumulation was mainly observed with 7KC and 7β-hydroxycholesterol. The highest polar lipid accumulation, which was triggered by 7KC, was counteracted by z-VAD-fmk. These findings demonstrate that myelin figure formation is a caspase-independent event closely linked with the cytotoxicity of oxysterols, and they highlight a relationship between caspase activity and polar lipid accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

7KC:

7-Ketocholesterol

7β-OH:

7β-Hydroxycholesterol

25-OH:

25-Hydroxycholesterol

CLSM:

Confocal laser scanning microscopy

DNR:

Daunorubicin

FAMIS:

Factor analysis of medical image sequences

NR:

Nile Red

PI:

Propidium iodide

RAPA:

Rapamycin

TUNICA:

Tunicamycin

VP-16:

Etoposide

References

  • Agassandian M, Mathur SN, Zhou J, Field FJ, Mallampalli RK (2004) Oxysterols trigger ABCA1-mediated basolateral surfactant efflux. Am J Respir Cell Mol Biol 31:227–233

    Article  PubMed  CAS  Google Scholar 

  • Argmann CA, Sawyez CG, Li S, Nong Z, Hegele RA, Pickering JG, Huff MW (2004) Human smooth muscle cell subpopulations differentially accumulate cholesteryl ester when exposed to native and oxidized lipoproteins. Arterioscler Thromb Vasc Biol 24:1290–1296

    Article  PubMed  CAS  Google Scholar 

  • Bobryshev YV (2006) Monocyte recruitment and foam cell formation in atherosclerosis. Micron 37:208–222

    Article  PubMed  CAS  Google Scholar 

  • Brown AJ, Jessup W (1999) Oxysterols and atherosclerosis. Atherosclerosis 142:1–28

    Article  PubMed  CAS  Google Scholar 

  • Carpenter KLH (2002) Good COP, bad COP: an unsolved murder. Are dietary cholesterol oxidation products guilty of atherogenicity? Br J Nutr 88:335–338

    Article  PubMed  CAS  Google Scholar 

  • Colles SM, Maxson JM, Carlson SG, Chisolm GM (2001) Oxidized LDL-induced injury and apoptosis in atherosclerosis. Potential roles for oxysterols. Trends Cardiovasc Med 11:131–138

    Article  PubMed  CAS  Google Scholar 

  • Darzynkiewicz Z, Bruno S, Del Bino G, Gorczyca W, Hotz MA, Lassota P, Traganos F (1992) Features of apoptotic cells measured by flow cytometry. Cytometry 13:795–808

    Article  PubMed  CAS  Google Scholar 

  • Devries-Seimon T, Li Y, Yao PM, Stone E, Wang Y, Davis RJ, Flawell R, Tabas I (2005) Cholesterol- induced macrophage apoptosis requires ER stress pathways and engagement of the type A scavenger receptor. J Cell Biol 171:61–73

    Article  PubMed  CAS  Google Scholar 

  • Emanuel HA, Hassel CA, Addis PB, Bergmann SD, Zavoral JH (1991) Plasma cholesterol oxidation products in human subjects fed a meal rich in oxysterols. J Food Sci 56:843–847

    Article  CAS  Google Scholar 

  • Ericsson J, Jackson SM, Lee BC, Edwards PA (1996) Sterol regulatory element binding protein binds to a cis element in the promoter of the farnesyl diphosphate synthase gene. Proc Natl Acad Sci U S A 93:945–950

    Article  PubMed  CAS  Google Scholar 

  • Esterbauer H, Ramos P (1995) Chemistry and pathophysiology of oxidation of LDL. Rev Physiol Biochem Pharmacol 127:31–64

    Article  Google Scholar 

  • Eymin B, Dubrez L, Allouche M, Solary E (1997) Increased gadd 153 messenger RNA level is associated with apoptosis in human leukemic cells treated with etoposide. Cancer Res 15:686–695

    Google Scholar 

  • Feng B, Yao PM, Li Y, Devlin CM, Zhang D, Harding HP, Sweeney M, Rong JX, Kuriakose G, Fischer EA, Marks AR, Ron D, Tabas I (2003) The endoplasmic is the site of cholesterol-induced cytotoxicity in macrophages. Nat Cell Biol 9:781–792

    Article  CAS  Google Scholar 

  • Fink SL, Cookson BT (2005) Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun 73:1907–1916

    Article  PubMed  CAS  Google Scholar 

  • Fowler S (1980) Characterization of foam cells in experimental atherosclerosis. Acta Med Scand Suppl 642:151–158

    PubMed  CAS  Google Scholar 

  • Frouin F, Cinotti L, Benali H, Buvat I, Bazin JP, Millet P, Di Paola R (1993) Extraction of functional volumes from medical dynamic volumetric datasets. Comp Med Imaging Graph 17:397–404

    Article  CAS  Google Scholar 

  • Greenspan P, Fowler SD (1985) Spectrofluorometric studies of the lipid probe, Nile Red. J Lipid Res 26:781–789

    PubMed  CAS  Google Scholar 

  • Guttentag S, Robinson L, Zhang P, Bühling F, Beers M (2003) Cysteine protease activity is required for surfactant protein B processing and lamellar body biogenesis. Am J Respir Cell Mol Biol 28:69–79

    Article  PubMed  CAS  Google Scholar 

  • Hariri M, Millane G, Guimond MP, Guay G, Dennis JW, Nabi IR (2000) Biogenesis of multilamellar bodies via autophagy. Mol Biol Cell 11:255–268

    PubMed  CAS  Google Scholar 

  • Herdson PB, Kaltenbach JP (1965) Electron microscope studies on enzyme activity and the isolation of thiohydantoin-induced myelin figures in rat liver. J Cell Biol 25:485–493

    Article  PubMed  CAS  Google Scholar 

  • Hu P, Han Z, Couvillon AD, Exton JH (2004) Critical role of endogenous Akt/IAPs and MEK1/ERK pathways in counteracting endoplasmic reticulum stress-induced cell death. J Biol Chem 279:49420–49429

    Article  PubMed  CAS  Google Scholar 

  • Jänicke RU, Sprengart ML, Wati MR, Porter AG (1998) Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem 273:9357–9360

    Article  PubMed  Google Scholar 

  • Kahn E, Lizard G, Frouin F, Roignot P, Chardonnet Y, Di Paola R (1997) Laser scanning confocal microscopy and factor analysis of biomedical image sequences (FAMIS) to detect and characterize HPV DNA sequences by FISH in HeLa cells. Cytometry 28:269–279

    Article  PubMed  CAS  Google Scholar 

  • Kahn E, Lizard G, Pélégrini M, Frouin F, Roignot P, Chardonnet Y, Di Paola R (1999) Four-dimensional factor analysis of confocal images sequences (4D-FAMIS) to detect and characterize low numbers of human papillomavirus DNA by FISH in HeLa and SiHa cells. J Microsc 193:227–243

    Article  PubMed  CAS  Google Scholar 

  • Kahn E, Vejux A, Dumas D, Montange T, Frouin F, Robert V, Riedinger JM, Stoltz JF, Gambert P, Todd-Pokropek A, Lizard G (2004) FRET multiphoton spectral imaging microscopy of 7-ketocholesterol and Nile Red in U937 monocytic cells loaded with 7-ketocholesterol. Anal Quant Cytol Histol 26:304–313

    PubMed  Google Scholar 

  • Klinkner AM, Bugelski PJ, Waites R, Louden C, Hart TK, Kerns WD. (1997) A novel technique for mapping the lipid composition of atherosclerotic fatty streaks by en face fluorescence microscopy. J Histochem Cytochem 45:743–753

    PubMed  CAS  Google Scholar 

  • Klionsky DJ (2005) Autophagy. Curr Biol 15:R282–283

    Article  PubMed  CAS  Google Scholar 

  • Lemaire-Ewing S, Prunet C, Montange T, Vejux A, Berthier A, Bessède G, Corcos L, Gambert P, Néel D, Lizard G (2005) Comparison of the cytotoxic, pro-oxidant and pro-inflammatory characteristics of different oxysterols. Cell Biol Toxicol 21:97–114

    Article  PubMed  CAS  Google Scholar 

  • Leonarduzzi G, Biasi F, Chiarpotto E, Poli G (2004) Trojan horse-like behavior of a biologically representative mixture of oxysterols. Mol Aspects Med 25:155–167

    Article  PubMed  CAS  Google Scholar 

  • Liberski PP, Gadjusek DC, Brown P (2002) How do neurons degenerate in prion diseases or transmissible spongiform encephalopathies (TSEs): neuronal autophagy revisited. Acta Neurobiol 62:141–147

    Google Scholar 

  • Lizard G, Moisant M, Cordelet C, Monier S, Gambert P, Lagrost L (1997) Induction of similar features of apoptosis in human and bovine vascular endothelial cells treated by 7-ketocholesterol. J Pathol 183:330–338

    Article  PubMed  CAS  Google Scholar 

  • Lizard G, Monier S, Cordelet C, Gesquière L, Deckert V, Gueldry S, Lagrost L, Gambert P (1999) Characterization and comparison of the mode of cell death, apoptosis versus necrosis, induced by 7β-hydroxycholesterol and 7-ketocholesterol in the cells of the vascular wall. Arterioscler Thromb Vasc Biol 19:1190–1200

    PubMed  CAS  Google Scholar 

  • Lizard G, Miguet C, Bessède G, Monier S, Gueldry S, Néel D, Gambert P (2000) Impairment with various antioxidants of the loss of mitochondrial transmembrane potential and of the cytosolic release of cytochrome c occuring during 7-ketocholesterol-induced apoptosis. Free Radic Biol Med 28:743–753

    Article  PubMed  CAS  Google Scholar 

  • Logette E, Le Jossic-Corcos C, Masson D, Solier S, Sequeira-Legrand A, Dugail I, Lemaire-Ewing S, Desoche L, Solary E, Corcos L (2005) Caspase-2, a novel lipid sensor under the control of sterol regulatory element binding protein 2. Mol Cell Biol 21:9621–9631

    Article  CAS  Google Scholar 

  • Magana MM, Osborne TF (1996) Two tandem binding sites for sterol regulatory element binding proteins are required for sterol regulation of fatty-acid synthase promoter. J Biol Chem 271:32689–32694

    Article  PubMed  CAS  Google Scholar 

  • Majno G, Joris J (1995) Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 146:3–15

    CAS  Google Scholar 

  • Martinet W, De Bie M, Schrijvers DM, De Meyer GR, Herman AG, Kockx MM (2004) 7-Ketocholesterol induces protein ubiquitination, myelin figure formation, and light chain 3 processing in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 24:2296–2301

    Article  PubMed  CAS  Google Scholar 

  • Martinet W, Kockx MM (2001) Apoptosis in atherosclerosis: focus on oxidized lipids and inflammation. Curr Opin Lipidol 12:535–541

    Article  PubMed  CAS  Google Scholar 

  • Massey JB (2006) Membrane and protein interactions of oxysterols. Curr Opin Lipidol 17:296–301

    Article  PubMed  CAS  Google Scholar 

  • McGookey D, Anderson RGW (1983) Morphological characterization of the cholesteryl ester cycle in cultured mouse macrophage foam cells. J Cell Biol 97:1156–1168

    Article  PubMed  CAS  Google Scholar 

  • Miguet-Alfonsi C, Prunet C, Monier S, Bessède G, Lemaire-Ewing S, Berthier A, Ménétrier F, Néel D, Gambert P, Lizard G (2002) Analysis of oxidative processes and of myelin figure formation before and after the loss of mitochondrial transmembrane potential during 7β-hydroxycholesterol and 7-ketocholesterol-induced apoptosis: comparison with various pro-apoptotic chemicals. Biochem Pharmacol 64:527–541

    Article  PubMed  CAS  Google Scholar 

  • Miguet C, Monier S, Bettaieb A, Athias A, Bessède G, Laubriet A, Lemaire S, Néel D, Gambert P, Lizard G (2001) Ceramide generation occurring during 7β-hydroxycholesterol- and 7-ketocholesterol-induced apoptosis is caspase independent and is not required to trigger cell death. Cell Death Differ 8:83–99

    Article  PubMed  CAS  Google Scholar 

  • Momoi T (2006) Conformational diseases and ER stress-mediated cell death: apoptotic cell death and autophagic cell death. Curr Mol Med 6:111–118

    Article  PubMed  CAS  Google Scholar 

  • Paglin S, Lee NY, Nakar C, Fitzgerald M, Plotkin J, Deuel B, Hackett N, McMahill M, Sphicas E, Lampen N, Yahalom J (2005) Rapamycin-sensitive pathway regulates mitochondrial membrane potential, autophagy, and survival in irradiated MCF-7 cells. Cancer Res 65:11061–11070

    Article  PubMed  CAS  Google Scholar 

  • Pedruzzi E, Guichard C, Ollivier V, Driss F, Fay M, Prunet C, Marie JC, Pouzet C, Samadi M, Elbim C, O’dowd Y, Bens M, Vandewalle A, Gougerot-Pocidalo MA, Lizard G, Ogier-Denis E (2004) NAD(P)H oxidase Nox-4 mediates 7-ketocholesterol-induced endoplasmic reticulum stress and apoptosis in human aortic smooth muscle cells. Mol Cell Biol 24:10703–10717

    Article  PubMed  CAS  Google Scholar 

  • Prunet C, Lemaire-Ewing S, Ménétrier F, Néel D, Lizard G (2005) Activation of caspase-3-dependent and –independent pathways during 7-ketocholesterol- and 7β-hydroxycholesterol-induced cell death: a morphological and biochemical study. J Biochem Mol Toxicol 19:311–326

    Article  PubMed  CAS  Google Scholar 

  • Prunet C, Montange T, Vejux A, Laubriet A, Rohmer JF, Riedinger JM, Athias A, Lemaire-Ewing S, Néel D, Petit JM, Steinmetz E, Brenot R,Gambert P, Lizard G (2006) Multiplexed flow cytometric analyses of pro- and anti-inflammatory cytokines in the culture media of oxysterol-treated human monocytic cells and in the sera of atherosclerotic patients. Cytometry 69:359–373

    Article  PubMed  CAS  Google Scholar 

  • Reasor MJ (1989) A review of the biology and toxicologic implications of the induction of lysosomal lamellar bodies by drugs. Toxicol Appl Pharmacol 97:47–56

    Article  PubMed  CAS  Google Scholar 

  • Ridsdale R, Post M (2004) Surfactant lipid synthesis and lamellar body formation in glycogen-laden type II cells. Am J Physiol Lung Cell Mol Physiol 287:L743–751

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez I, Matsuura K, Ody C, Nagata S, Vassalli P (1996) Systemic injection of a tripeptide inhibits the intracellular activation of CPP32-like proteases in vivo and fully protects mice against Fas-mediated fulminant liver destruction and death. J Exp Med 184:2067–2072

    Article  PubMed  CAS  Google Scholar 

  • Ryan L, O’Callaghan YC, O’Brien NM (2004) Generation of an oxidative stress precedes caspase activation during 7beta-hydroxycholesterol-induced apoptosis in U937 cells. J Biochem Mol Toxicol 18:50–59

    Article  PubMed  CAS  Google Scholar 

  • Savatier J, Vigo J, Salmon JM (2003) Monitoring cell cycle distribution in living cells by videomicrofluorometry and discriminant factorial analysis. Cytometry 55A:8–14

    Article  Google Scholar 

  • Schmitz G, Muller G (1991) Structure and function of lamellar bodies, lipid-protein complexes involved in storage and secretion of cellular lipids. J Lipid Res 32:1539–1570

    PubMed  CAS  Google Scholar 

  • Schroepfer GJ (2000) Oxysterols: modulators of cholesterol metabolism and other processes. Physiol Rev 80:361–554

    PubMed  CAS  Google Scholar 

  • Schulze-Osthoff K, Bakker AC, Vanhaesebroeck B, Beyaert R, Jacob WA, Fiers W. (1992) Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions. J Biol Chem 267:5317–5323

    PubMed  CAS  Google Scholar 

  • Shio H, Haley NJ, Fowler S (1979) Characterization of lipid-laden aortic cells from cholesterol-fed rabbits. III. Intracellular localization of cholesterol and cholesteryl ester. Lab Invest 41:160–167

    PubMed  CAS  Google Scholar 

  • Shiratori Y, Okwu AK, Tabas I (1994) Free cholesterol loading of macrophages stimulates phosphatidylcholine biosynthesis and up-regulation of CTP: phosphocholine cytidylyltransferase. J Biol Chem 269:11337–11348

    PubMed  CAS  Google Scholar 

  • Tabas I, Marathe S, Keesler GA, Shiratori Y (1996) Evidence that the initial up-regulation of phosphatidylcholine biosynthesis in free cholesterol-loaded macrophages is an adaptative response that prevents cholesterol-induced cellular necrosis. Proposed role of an eventual failure of this response in foam cell necrosis in advanced atherosclerosis. J Biol Chem 271:22773–22781

    Article  PubMed  CAS  Google Scholar 

  • Tabas I (2002) Consequences of cellular cholesterol accumulation: basic concepts and physiological implications. J Clin Invest 110:905–911

    Article  PubMed  CAS  Google Scholar 

  • Terrisse AD, Bezombes C, Lerouge S, Laurent G, Jaffrézou JP (2002) Daunorubicin- and Ara-C-induced interphasic apoptosis of human type II leukemia cells is caspase-8-independent. Biochim Biophys Acta 1584:99–103

    PubMed  CAS  Google Scholar 

  • Unger RH, Orci L (2002) Lipoapoptosis: its mechanism and its diseases. Biochim Biophys Acta 1585:202–212

    PubMed  CAS  Google Scholar 

  • Vejux A, Kahn E, Dumas D, Bessède G, Ménétrier F, Athias A, Riedinger JM, Frouin F, Stoltz JF, Ogier-Denis E, Todd-Pokropek A, Lizard G (2005) 7-Ketocholesterol favors lipid accumulation and colocalizes with Nile Red positive structures formed during 7-ketocholesterol-induced apoptosis: analysis by flow cytometry, FRET biphoton spectral imaging microscopy, and subcellular fractionation. Cytometry 64A:87–100

    Article  CAS  Google Scholar 

  • Wang X, Briggs MR, Hua X, Yokoyama C, Goldstein JL, Brown MS (1993) Nuclear protein that binds sterol regulatory element of low density lipoprotein receptor promoter. II . Purification and characterization. J Biol Chem 268:14497–14504

    PubMed  CAS  Google Scholar 

  • Wang X, Zelenski NG, Yang J, Sakai J, Brown MS, Goldstein JL (1996) Cleavage of sterol regulatory element binding protein (SREBPs) by CPP32 during apoptosis. EMBO J 15:1012–1020

    PubMed  CAS  Google Scholar 

  • Wielkoszynski T, Gawron K, Strzelcyk J, Bodzek P, Zalewska-Ziob M, Trapp G, Sreniak M, Wickowski A (2006) Cellular toxicity of oxycholesterols. Bioessays 28:387–2098

    Article  PubMed  CAS  Google Scholar 

  • Yeh CG, Hsi B, Faulk WP (1981) Propidium iodide as a nuclear marker in immunofluorescence. II. Use with cellular identification and viability studies. J Immunol Methods 43:269–275

    Article  PubMed  CAS  Google Scholar 

  • Zahm JM, Baconnais S, Monier S, Bonnet N, Bessède G, Gambert P, Puchelle E, Lizard G (2003) Chronology of cellular alterations during 7-ketocholesterol-induced cell death on A7R5 rat smooth muscle cells: analysis by time lapse-video microscopy and conventional fluorescence microscopy. Cytometry 52A:57–69

    Article  CAS  Google Scholar 

  • Zimmermann T (2005) Spectral imaging and linear unmixing in light microscopy. Multispectral imaging fluorescence microscopy for living cells. Adv Biochem Eng Biotechnol 95:245–265

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Pr Eric Solary (INSERM UMR 866/IFR 100, Dijon, France) for his helpful comments. The authors are indebted to Mrs. Mary Bouley for reviewing the English version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gérard Lizard.

Additional information

This work was supported by grants from the INSERM, the Ligue Contre Le Cancer (Comité de Côte d’Or) and the Conseil Régional de Bourgogne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vejux, A., Kahn, E., Ménétrier, F. et al. Cytotoxic oxysterols induce caspase-independent myelin figure formation and caspase-dependent polar lipid accumulation. Histochem Cell Biol 127, 609–624 (2007). https://doi.org/10.1007/s00418-006-0268-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-006-0268-0

Keywords

Navigation