Skip to main content
Log in

PKC α-mediated CREB activation is oxygen and age-dependent in rat myocardial tissue

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Both hypoxia and aging affect the morphology and the function of rat myocardial tissue. Moreover the heart tries to counteract the impaired function by activating specific signalling cascades. Here we report the involvement of CREB protein in “in vivo” response to hypoxic challenge and during aging in rat hearts. CREB is activated in parallel to HIF-1α nuclear translocation in the young after hypoxia exposure followed by reoxygenation, while this kind of response is not so dramatic in the old, neither in terms of CREB activation, neither in terms of HIF-1α expression and translocation, suggesting in the old the existence of an impaired oxygen-sensing mechanism or an adaptation of the cells to hypoxia. Moreover in the young a PKC α/Erk pathway seems to be involved in the activation of HIF-1α along with CREB, suggesting an attempt of the young to counteract the damage evoked by hypoxia, while in the old a PKC α/p38 MAPK/CREB pathway could determine the occurrence of both aging and aged cell hypoxia response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bianchi G, Di Giulio C, Rapino C, Rapino M, Antonucci A, Cataldi A (2006) p53 and p66 proteins compete for hypoxia-inducible-factor 1 alpha stabilization in young and old rat hearts exposed to intermittent hypoxia. Gerontology 52(1):17–23

    Article  PubMed  CAS  Google Scholar 

  • Blois JT, Mataraza JM, Mecklenbrauker I, Tarakhovsky A, Chiles T (2004) B cell receptor-induced CAMP response element-binding proactivation in B lymphocytes requires novel protein kinase C δ. J Biol Chem 279(29):30123–30132

    Article  PubMed  CAS  Google Scholar 

  • Brindle P, Linke S, Montminy M (1993) Protein kinase A dependent activator in transcription factor CREB reveals new role for CREM repressors. Nature 364:821–824

    Article  PubMed  CAS  Google Scholar 

  • Canon E, Cosgaya JM, Scsucova S, Aranda A (2004) Rapid effects of retinoic acid on CREB and Erk phosphorylation in neuronal cells. Mol Biol Cell 12:5583–5592

    Article  Google Scholar 

  • Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, Dewerchin M, Neeman N, Bono F, Abramovitch R, Maxwell P, Koch CJ, Ratcliffe P, Moons L, Jain RK, Collen D, Keshert E (1998) Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394:485–490

    Article  PubMed  CAS  Google Scholar 

  • Cataldi A, Bianchi G, Rapino C, Sabatini N, Centurione L, Di Giulio C, Bosco D, Antonucci A (2004) Molecular and morphological modifications occurring in rat heart exposed to intermittent hypoxia: role for Protein kinase C α. Exp Gerontol 39(3):395–405

    Article  PubMed  CAS  Google Scholar 

  • Centurione L, Antonucci A, Miscia S, Grilli A, Rapino M, Grifone G, Di Giacomo V, Falconi M, Di Giulio C, Cataldi A (2002) Age-related death-survival balance in myocardium: an immunohistochemical and biochemical study. Mech Ageing Dev 123:341–350

    Article  PubMed  Google Scholar 

  • Chandel NS, Schumacker PT (2000) Cellular oxygen sensing by mitochondria: old questions, new insight. J Appl Physiol 88:1880–1889

    Article  PubMed  CAS  Google Scholar 

  • Chavez JC, La Manna JC (2003) Hypoxia-inducible factor-1α accumulation in the rat brain in response to hypoxia and ischemia is attenuated during ageing. Adv Exp Med Biol 510:337–341

    PubMed  CAS  Google Scholar 

  • Chien KR (1999) Stress pathway and heart failure. Cell 98:555–558

    Article  PubMed  CAS  Google Scholar 

  • Chung YH, Kim EJ, Shin CM, Joo KM, Kim MJ, Woo HW, Cha CI (2002) Age-related changes in CREB binding protein immunoreactivity in the cerebral cortex and hippocampus of rats. Brain Res 956:312–318

    Article  PubMed  CAS  Google Scholar 

  • Cohen-Jonathan EJ, Bernhard EJ, McKenna WG (1999) How does radiation kill cells? Curr Opin Chem Biol 3:77–83

    Article  CAS  Google Scholar 

  • Dhalla NS, Temsah RM, Netticadam T (2000) Role of oxidative stress in cardiovascular diseases. J Hypertens 18:655–673

    Article  PubMed  CAS  Google Scholar 

  • El Jamali A, Freund C, Rechner C, Scheidereit C, Dietz R, Bergmann MW (2004) Reoxygenation after severe hypoxia induces cardiomyocyte hypertrophy in vitro: activation of CRB downstream of GSK3 β. FASEB J 18:1096–1098

    PubMed  CAS  Google Scholar 

  • Gibellini D, Bassini A, Pierpaoli S, Bertolaso L, Milani D, Capitani S, La Placa M, Zauli G (1998) Extracellular HIV-1 Tat protein induces the rapid Ser 133 phosphorylation and activation of CREB transcription factor in both Jurkat lymphoblastoid T cells and primary peripheral blood mononuclear cells. J Immunol 160:3891–3898

    PubMed  CAS  Google Scholar 

  • Husse B, Isenberg G (2005) CREB expression in cardiac fibroblasts and CREM expression in ventricular myocytes. Biochem Biophys Res Commun 9334(4):1260–1265

    Article  Google Scholar 

  • Iwasa H, Han J, Ishikawa F (2003) Mitogen-activated protein kinase p38 defines the common senescence-signaling pathway. Genes Cells 8:131–144

    Article  PubMed  CAS  Google Scholar 

  • Jang IS, Rhim JH, Park SC, Yeo EJ (2006) Downstream molecular events in the altered profiles of lysophosphatidic acid-induced cAMP in senescent human diploid fibroblasts. Exp Mol Med 38(2):134–143

    PubMed  CAS  Google Scholar 

  • Matsumoto A (2000) Age-dependent changes in phosphorylated cAMP response element-binding protein immunoreactivity in motoneurons of the spinal nucleus of the bulbocavernosus of male rats. Neurosci Lett 279:117–120

    Article  PubMed  CAS  Google Scholar 

  • Mehrhof FB, Muller F-U, Bergmann MW, Li P, Wang Y, Schmitz W, Dietz R, von Harsdorf R (2001) In cardiomyocyte hypoxia, insulin-like growth factor-I-induced antiapoptotic signalling requires phosphatidylinositol-3-OH-kinase-dependent and mitogen-activated protein kinase-dependent activation of the transcription factor cAMP response element-binding protein. Circulation 104:2088–2094

    PubMed  CAS  Google Scholar 

  • Rapino C, Bianchi G, Di Giulio C, Centurione L, Cacchio M, Antonucci A, Cataldi A (2005) HIF-1 α cytoplasmic accumulation associated with cell death in old rat cerebral cortex. Aging Cell 4(4):165–222

    Article  Google Scholar 

  • Sang N, Stiehl DP, Bohensky J, Leshchinsky I, Srinivas V, Caro J (2003) MAPK signalling up-regulates the activity of hypoxia-inducible factors by its effects on p300. J Biol Chem 278(16):14013–14019

    Article  PubMed  CAS  Google Scholar 

  • Schumacker PT (2003) Current paradigms in cellular oxygen sensing. Adv Exp Med Biol 543:57–71

    PubMed  CAS  Google Scholar 

  • Semenza GL (2001) HIF-1 and mechanisms of hypoxia sensing. Curr Opin Cell Biol 13:167–171

    Article  PubMed  CAS  Google Scholar 

  • Semenza GL (2004) Hydroxylation of HIF-1: oxygen sensing at the molecular level. Physiology (Bethesda) 19:176–182

    CAS  Google Scholar 

  • Shackelford DA, Yeh RY (2003) Activation of extracellular signal regulated kinases (Erk) during reperfusion of ischemic spinal cord. Brain Res Mol Brain Res 115(2):173–186

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Venkataraman SL, Dodson GE, Mabb AM, LeBlanc S, Tibbetts RS (2004) Direct regulation of CREB transcriptional activity by ATM in response to genotoxic stress. Biochemistry 101(16):5898–5903

    CAS  Google Scholar 

  • Sugden PH, Clerk A (1998) Cellular mechanisms of cardiac hypertrophy. J Mol Med 76:725–746

    Article  PubMed  CAS  Google Scholar 

  • Suh Y (2002) Cell signalling in aging and apoptosis. Mech Ageing Dev 123:881–890

    Article  PubMed  CAS  Google Scholar 

  • Walton M, Woodgate AM, Muravlev A, Xu R, During MJ, Dragunow M (1999) CREB phosphorylation promotes nerve cell survival. J Neurochem 73:1836–1842

    PubMed  CAS  Google Scholar 

  • Xing J, Ginty DD, Greenberg M (1996) Coupling of the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase. Science 273:959–963

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto KK, Gonzalez GA, Biggs WH, Montminy MR (1988) Phosphorylation-induced binding and transcriptional efficacy of nuclear factor CREB. Nature 334:494–498

    Article  PubMed  CAS  Google Scholar 

  • Zarubin T, Han J (2005) Activation and signalling of the p38 MAP kinase pathway. Cell Res 15(1):11–18

    Article  PubMed  CAS  Google Scholar 

  • Zhang GX, Kimura S, Nishiyama A, Shokoji T, Rahman M, Yao L, Nagai Y, Fujisawa Y, Miyatabe A, Abe Y (2005) Cardiac oxidative stress in acute and chronic isoproterenol-infused rats. Cardiovasc Res 65:230–238

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by 2005 MIUR 60% Grant Professor A. Antonucci.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amelia Cataldi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Giulio, C., Rapino, M., Zingariello, M. et al. PKC α-mediated CREB activation is oxygen and age-dependent in rat myocardial tissue. Histochem Cell Biol 127, 327–333 (2007). https://doi.org/10.1007/s00418-006-0245-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-006-0245-7

Keywords

Navigation